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Abstract-This paper deals with double-diffusive (or thermo~iuta~) combined free convection, i.e. free 
convection due to buoyant forces (natural convection) and surface tension gradients (Marangoni con- 
vection), which are generated by volume differences and surface gradients of temperature and solute 
concentration. Attention is focused on boundary layers that form along a vertical liquid-gas interface, 
when the appropriately defined non-dimensional characteristic transport numbers are large enough, in 
problems of thermosolutal natural and Marangoni convection, such as buoyancy and surface tension 
driven flows in differentially heated open cavities and liquid bridges. Classes of similar solutions are derived 
for each class of convection on the basis of a rigorous order of magnitude analysis. Velocity, temperature 
and concentration profiles are reported in the similarity plane ; flow and transport properties at the liquid- 
gas interface (interfacial velocity, heat and mass transfer bulk coefficients) are obtained for a wide range 

of Prandtl and Schmidt numbers and different values of the similarity parameter. 

1. INTRODUCTION 

IN THE absence of imposed velocities and pressure 
differences, convection in systems with fluid-fluid 
interfaces may be due to volume driving forces (buoy- 
ancy) and surface driving forces (Marangoni stresses). 
Volume driving forces act in the direction of the gravi- 
tational vector (g) and are proportional to density 
differences. Marangoni stresses act on the interface 
and are due to surface gradients of the interfacial 
tension (0). Both may be generated by volume differ- 
ences and surface gradients of temperature and/or 
solute concentration. 

In this paper we consider interface dissipative tIows 
of the boundary layer (BL) type, i.e. thin dissipative 
layers that may form near free surfaces when the 
appropriately defined transport numbers (Reynolds, 
Peclet, etc.) are large enough [I]. 

Interface boundary layers will be called Marangoni 
boundary layers (MBLs), natural (or buoyant) 
boundary layers (NBLs) or combined boundary lay- 
ers (CBLs), according to whether the driving actions 
are due to Marangoni stresses, only, to buoyant forces 
only or to both. A further classification is related to 
the nature (thermal or solutal) of the driving actions. 
A bounda~ layer will be called ‘singly-diffusive’ if all 
driving actions are of the same nature (thermal OP 
solutal) or ‘double-diffusive’ if the driving actions are 
of a different nature (thermai and solutal). 

The theory of MBLs has been formulated, up until 
now, only in the case of thermal free convection, so 
that only singly-diffusive, thermal MBLs have been 
investigated. Napolitano [1] carried out a systematic 
derivation of the steady thermal MBL equations and 
outlined a priori criteria for their applicability. Plane 
thermal MBLs were analysed by Napolitano and 
Golia [2], who addressed the question of the existence 

and characterization of similar solutions, found simi- 
larity classes and obtained numerical solutions both 
in the case of uncoupled and coupled flow fields of 
the two interfacing fluids. 

In the case of axial-symmetric MBLs [3], by apply- 
ing the Mangler transformation, the field equations 
assume the same form as for plane motion, except 
for the interface tangential momentum balance equa- 
tion, in which the curvature radius of the interface 
explicitly appears. In this case similar solutions exist 
only if the equation of the interface is described by a 
power law in the Mangler variable. 

Natural boundary layers (NBLs) along fluid-~uid 
interfaces have been investigated only for the freely 
rising plume flow [4] when volume driving forces 
(buoyancy) of different nature (thermal and solutal) 
are present (double-diffusive NBLs). Similar solutions 
of thermal CBLs have been analysed by Golia and 
Viviani [S, 61. 

Recently Batishchev [7] reviewed MBLs con- 
sidering mainly the work done in the Soviet literature. 
Addition to the paper of Batishchev and more details 
on future research topics about MBLs can be found in 
the review paper by Napolitano and Viviani [S]. 

Here we present a mathematical formulation for 
the general case of interface boundary layers due to 

volume and surface driving actions, both generated 
by differences and surface gradients of temperature 
and/or solutal concentration. The classes of Maran- 
goni and combined boundary layers include, as par- 
ticular cases, those already investigated of thermal 
MBL [2] and CBL [5]. The class of NBLs, analysed 
here for different values of the similarity parameter in 
both cases of singly-diffusive and double-diffusive 
boundary layers, includes the case of plume flows con- 
sidered in ref. [4] (exponents of the power laws for the 
temperature and concentration equal to -3/S) in their 
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NOMENCXATURE 

normalized solutal concentration 
concentration scale factor 
solutal concentration 
mass diffusivity 
stream function in the similarity plane 
temperature in the similarity plane 
gravity vector 
component of the gravity vector along x 
solutal Grashof number 
thermal Grashof number 
SObi! concentration in the similarity 
plane 
non-dimensional curvature tensor of the 
interface 
curvature tensor of the interface 
local normal scale factor 
constant normal scale factor 
solutal Marangoni number 
thermal ~arangoni number 
unit normal to the interface 
pressure 
solutal Peclet number 
thermal Peclet number 
Prdndtl number 
Reynolds number 
Schmidt number 
non-dimensional temperature 
temperature scale factor 
temperature 
imposed temperature difference 
non-dimensional velocity component in 
the .u-direction 
non-dimensional velocity component in 
the y-direction 
non-dimensional velocity vector 
velocity vector 

component of velocity tangent to the 
interface 
mass diffusion speed 
buoyant speed 
Marangoni speed 
reference velocity 
thermal diffusion speed 
momentum diffusion speed 
non-dimensional arc length along the 
interface 

? non-dimensional Euclidean distance 
from the interface. 

Greek symbols 
thermal diffusivity 
power law exponent for the temperature 
coefficient of expansion with 

temperature and solute concentration 
power law exponent for the 
concentration 
jump operator 
boundary layer displacement thickness 
similarity variable 
power law exponent for the normal scale 
fdctor 
dynamic viscosity 
momentum diffusivity 
non-dimensional pressure 
density 
equilibrium surface tension 
rates of change of surface tension 

with temperature and solute 
concentration 
non-dimensional stream function 
power law exponent for the pressure 
nabla operator. 

analysis of boundary layers along vertical solid walls. 
The paper runs as follows: the basic assumptions 

for the problem under study and the corresponding 
field equations are presented in Section 2; the non- 
dimensionalization process is then performed in Sec- 
tion 3; Section 4 deals with the search and char- 
acterization of similar solutions, according to a rig- 
orous and coherent order of magnitude analysis. Such 
a unitary approach determines, at the same time, the a 
priori conditions, expressed in terms of the problem’s 
data, for the existence of the different BL regimes 
(Marangoni, natural and combined ; thermal, solutal, 
the~osoluta1) and the conditions for the existence of 
similar solutions. All possible cases are presented in 
Section 5, where the similarity conditions, the per- 
tinent expressions for the scale factors, and the field 
equations are discussed for each specific BL regime. 
Numerical results are presented in Section 6. Final 

comments and conclusions are outlined in the last 
section. 

2. BASIC ASSUMPTIONS AND FIELD 

EQUATIONS 

The geometry of the problem is shown in Fig. 1. 
We shall consider steady, plane flows in the boundary 
layer along the liquid side of the interface C of a 
plane liquid bridge, of extension L, parallel to the 
gravitational vector g ; X and I’ are dimensional Car- 
tesian coordinates; x and y are non-dimensional 
boundary layer coordinates with x the arc length along 
C, and _r the Euclidean distance from the interface 
Z. The end walls are maintained at a given positive 
temperature difference AT = Tn - Tc and there are 
neither imposed velocities nor imposed pressure 
differences. 
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FIG. I. Geometry of the problem. 

The liquid is a Newtonian ideal binary mixture 

with constant diffusion coefficients ; Soret and Dufour 
effects will be neglected ; the Boussinesque approxi- 
mation applies ; viscous dissipation is negligible. Free 

convective motion is induced by Marangoni stresses 
and buoyancy forces arising from temperature and 
solute concentration gradients and/or differences. The 

interface Z is modelled as a massless stream-surface 

with two intensive degrees of freedom (temperature 
and electrochemical potential), in thermal, mech- 
anical and chemical equilibrium with the adjacent vol- 

ume phases [9]. 
Momentum, energy and mass coupling between 

liquid and gas phases, radiation effects and surface 

irreversibility are assumed to be negligible. 
The relevant state equations for the volume and 

surface phases are assumed to be given, with the above- 
mentioned thermal and chemical equilibrium hypoth- 
esis of the surface phase, by 

P = Ph]l -/MT-z-d-MC-G)1 (la) 
rJ = ah-~~(T-Th)-a~(C-C,) (lb) 

where p is the density, g the equilibrium surface 

tension, P,,&, ph/& and eT, cc the constant rates of 
change with temperature T and solute concentration 
C of density and surface tension, respectively. The 
subscript (h) denotes values pertaining to the hydro- 

static state, assumed uniform and chosen as the ref- 
erence state. 

The curvilinear coordinate x is always directed in 
the sense of the motion. The driving forces, for the 
problem under study, are the buoyant force, (g/p,,)Vp, 
in the volume phase, and the surface gradient of cr, on 
the liquid-gas interface, which, upon equations (la) 

and (1 b), are given by 

(SIPh)VP = -_g&VTfP,VC) (24 

V,o = -o,V,T-a,V,C (2b) 

where V, denotes the surface gradient operator [lo]. 
The directions of the driving actions depend on 

the orientation of the temperature and concentration 
gradients in the liquid, and on the signs of the ther- 

modynamic coefficients or, c~c, fir, ,/&. There are sev- 

eral combinations of the signs and magnitudes of VT 
and VC, and of the thermodynamic coefficients or, oc, 
fir, PC, which determine the direction of the motion in 

the physical plane. The mathematical formulation we 
shall derive in the next sections will be aimed at mini- 

mizing the number of solutions, in the similarity plane, 
able to cover all possible cases in the physical plane. 
This will be done by using the criterion of maximum 

normalization of the balance equations and of the 
interface boundary conditions by means of scale fac- 
tors, for the flow field quantities, the signs and values 

of which account for the effective physical situation, 
i.e. signs and magnitudes of VT and VC, CJ~, uc, /IT, 

P C’ 
With the above assumptions and positions the field 

equations are the thermodynamic state equations (la) 
and (1 b), the balance equations for the liquid and the 

balance equations for the surface phase, represent- 
ing the boundary conditions for the liquid balance 
equations 

v*v=o (3a) 

v.vv++ “v2v+;g (3b) 

V-VT= stV2T (3c) 

V*VC= DV'C (34 

n*V=O (44 

6(V,) = 0, V, = (n A V) A n (4b) 

h[p(n*VV,--V;K)]+V,cr = 0 (4c) 

6T=O (44 

x=0 (&I 

where 6 f = f(x. O+) - f(x, O-) is the jump of ,f at the 
interface, n its unit normal oriented toward the liquid 

(see Fig. l), K the curvature tensor of the interface Z ; 
P the pressure ; p the dynamic viscosity ; v, c( and D 
momentum, thermal and solute mass diffusivities, and 
all other symbols have already been defined. 



I006 L. G. NADOLITANO CI rrl 

3. NON-DIMENSIONAL FIELD EQUATIONS 

3.1. Gerwral remarks 
To put the field equations in the correct non-dimen- 

sional form, the following facts must be taken into 

account 

(a) The set of reference quantities cannot be chosen 

arbitrarily a priori but must be determined, in terms 
of the problem’s data only. from a rigorous and sys- 

tematic order of magnitude analysis (OMA) of the 

held equations. 
(b) When dissipative layers along the interface are 

present, the flow field is not isotropic. A physically 

correct non-dimensional form of the field equations 
must exhibit this anisotropy so that, in particular, 

reference quantities for velocity and length in direc- 
tions normal and parallel to the interface must be 

allowed to be of different orders of magnitude (aniso- 
tropic reference quantities for vectors and tensors). 

(c) The coordinate system has to single out 

explicitly the direction field of the normal n to the 
interface and the most natural choice is the parallel- 

surface coordinate system (pscc) [IO, 1 I], in which 
one of the coordinates is the Euclidean distance from 
C and the other two are arbitrary curvlinear coor- 
dinates on C. In the subject case, the problem’s data 

are appropriately combined in the set of seven charac- 

teristic speeds defined by 

v,. = 1 
L' 

v, = x 
L’ 

VII = :’ (5=) 

and referred to as ‘diffusion’ speeds (5a)-(5c), ‘volume 
(or buoyant) driving’ speeds (6a) and (6b) and ‘sur- 
face (or Marangoni) driving’ speeds (7a) and (7b). In 

(6a) and (6b) gY denotes the component of the gravity 
vector along x. The signs of the driving speeds depend 

on those of the thermodynamic derivatives involved 
in their definition. The values of the volume driving 

speeds (6a) and (6b) may be limited by stability 
considerations. 

The ratios (&IL) and ( V7,,/ V,) between reference 
lengths and velocities in directions normal and parallel 

to the interface are of the same order, upon the con- 
tinuity equation (3a). This common order of mag- 
nitude will be referred to as the ‘normal scale factor’ 
and denoted by (I). In principle, reference quantities 
can be tither constant (global non-dimensional for- 
mulation) or functions of the coordinate on the sur- 
face X (local non-dimensional formulation). Their 
determination, on the basis of a rigorous OMA of 
the field equations, leads to a constrained maximum 
problem formulated, analysed and solved by Napo- 
litano [ 121 for the case of constant reference quantities. 

In this paper we present an extension of Napo- 

litano’s constrained problem to the case in which ref- 
erence quantities are variable (local non-dimensional 
formulation). After having formulated the vectorial 
non-dimensional form of the field equations by means 
of constant and isotropic reference quantities, we shall 
perform, simultaneously, the appropriate order 01 
magnitude analysis and the search for similarity con- 

ditions by introducing variable, non-isotropic. ref- 
erence quantities. Such a unitary approach will detcr- 

mine, at the same time. the a priori conditions. 

expressed in terms of the problem’s data, for the cxis- 
tence of the different BL regimes (Marangoni, natural 
and combined) and the conditions under which simi- 
larity prevails. The analysis will be limited to first 

order in the asymptotic expansions. Second-order 
boundary layer effects will bc considered in future 
papers. The class of variation considered is the power 
class : extension to the other class, such as the cxpon- 

ential one, should be straightforward and will not be 

considered in this paper. 

3.2. Constant and isotropic refiwnw quantities 

Since there is no imposed pressure difference we let 

v= v,v. v+ (Xa. b) 

P = Ph$.Ph v$L T= T,,+(AT)t @c,d) 

C = C,. +(AC)c (8e) 

where, as said, AT is the imposed positive temperature 
difference (Fig. I), and AC the characteristic positive 

concentration difference. 
The non-dimensional equations and boundary con- 

ditions for the liquid volume phase read 

v**v=o (‘)a) 

Re*[v*V*v+V*rc] = V*‘v- (G*,t+G,*c)i, (Yb) 

Pe$- V*t = V*‘t (9c) 

pe;v * v*c. = v* ?( (gd) 

n*v=O (9e) 

cS(v,) = 0, v, = (n A v) A n (90 

ht = 0 (9h) 

6c = 0 (W 

where k is the non-dimensional curvature tensor: 
k = V,*n ; i, the unit vector of the x-axis. 

The numbers therein appearing 

Re* = 
V, V, V, 
v, ’ 

Pe: = 
VT 1 

pe,* = ~~ 
V,, 

(1W 

v,, vkz, GF= v ) CT. z v-- (lob) 
r 
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will be referred to as diffusion (lOa), driving volume 
(lob), and driving surface (10~) parameters, respec- 
tively. The product of any driving parameter by any 
diffusion parameter depends only on the problem’s 
data : its order of magnitude is uniquely determined 
for each specific problem. 

4. ORDER OF MAGNITUDE ANALYSIS AND 

SIMILAR SOLUTIONS 

We unify the OMA and the search for similar solu- 

tions by letting 

yI = y/l(x), l(x) = lox” (lla) 

Il/(%Y) = &$“~“‘f(?) (llb) 

u(x,_V) = XC’_ ‘“‘f’(q) (1 lc) 

0,~) = I,x~“[irlf(rl)-(l--)f(?)l (114 

P(x,y) = -:Xc9r(q) (114 

0, Y) = - hds(rl) (1 If) 

c(x,y) = -c,x”h(?J). (1 lg) 

A prime denotes derivatives with respect to the simi- 
larity variable q ; I(x) is the local normal scale factor 
and $(x,y) the non-dimensional stream function 

(tiY = u; $I = -v). The temperature and con- 

centration scale factors, to and cO, are constants of 
order one. No pressure scale factor needs to be intro- 
duced since no pressure differences are imposed. The 
functions f(q), X(V), g(q) and h(q) are all of order 
one. The constants i, p, y, w characterize the power 

laws assumed for the reference quantities. They will 
have to be determined together with the unknown 
constants V, and I,, from the OMA. 

As the analysis shall be restricted to boundary layer 
regimes, it will always be lo K 1. Temperature and 
concentration scale factors will be used to suitably 
normalize the field equations in the similarity plane. 

In substituting equations (11) into equations (9). 
we shall neglect terms in higher powers of I& and we 
assume that the interface maintains its hydrostatic 
shape (small capillary number) and that the non- 
dimensional principal radius of curvature of the inter- 

face, scaled by L, is at least of order one [13]. All 
terms involving the curvature tensor of the interface 
will then represent second-order effects and disappear 
from the first-order boundary layer equations. 

Details of the substitution will be omitted and only 
the final results, in terms of the leading order terms, 
will be reported. 

Field equations 

f”‘+(Re* @{(l -L)fS”-(1 -U)f” 

- ;[&/& wx]x(~+4~~*)} = -(GF/;)X’P+41- Utog 

-(G~~$x~~‘+~“~‘)c~~ (12a) 

7c’ = 0 (12b) 

g”+(Pe*,!i)[(l-A),fg’-bf’g] = 0 (12c) 

h”+(Pefl~)[(l -n)f‘h’-yf”h] = 0. (12d) 

Boundary conditions at the interface 

f(0) = 0 

- f”(0) = (M$ I,)x@+ 3L ‘)to/lg(0) 

(134 

+(M~I,)~“+~‘-*‘c~yh(0) (13b) 

t(x, 0) = tox”g(0) 

c(x, 0) = - c,x’h(O). 

(l3c) 

(l3d) 

The additional boundary conditions needed follow 
from the matching with the outer regions. We only 
consider here the case of a quiescent, uniform outer 

region. Non-quiescent outer regions [f’(a) = 11, 
either non-dissipative or dissipative, require a deeper 
and more general analysis of the asymptotic expan- 

sion techniques, applied to flow problems in liquid 
bridges and/or shallow cavities, which will be con- 

sidered in future works. 

In the subject case the asymptotic conditions are all 

homogeneous and read 

f’(m) = g(m) = h(a) = n(co) = 0. (13e) 

Then the normal momentum equation implies 

Z(V) = 0, the flow field is isobaric and the terms in the 
square bracket of equation (12a) disappear. For non- 

quiescent outer regions [f’(a) = 11, the pressure field 
would have the same distribution throughout the 
boundary layer [n(a) = 11, would be compatible only 
with an inviscid outer region and the pressure simi- 

larity exponent would be equal to 2( 1 - 21). 

In equations (12) there appear products of 1; by 
diffusion and driving volume parameters ; in bound- 

ary condition (13b) there appear products of I, by 
driving surface parameters. They are the diffusion 
measure numbers, on the left-hand side of equations 

(12a), (12~) and (12d) and the driving measure num- 
bers, on the right-hand side of equations (12a) and 
(13b). It is seen that only driving measure numbers 
influence the similarity conditions. 

Napolitano’s constrained maximum criterion, as 
adapted to the subject case, requires that : all measure 

numbers be, at most, of order one, and the largest 

driving measure number be set equal to one 

max{Re* I& Pe*,l& PerI;} < O(1) (14a) 

max{lG$lI& IG:l/& IM*,l&,, IM:II,} = 1. (14b) 

The similarity conditions will then require the van- 

ishing of the x-exponent of all, and only, the terms 
with measures of order one. The ratio of any two 
diffusion measures depends only on the ratio of the 
corresponding diffusion coefficients. Hence if we 
denote by E the smallest diffusion coefficient and by R* 
the corresponding largest diffusion parameter (with 
R* > U(1) since the analysis will be restricted to 
boundary layer regimes), criterion (14a) is satisfied by 
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Table 1. Different alternatives for the diffusion coefficients and corresponding orders of magnitude 
of the diffusion transport parameters 

Smallest 
diffusion 

coefficient Momentum 
Diffusion measures 

Energy Solute mass 

Case 

a Pr < O(I) 

letting 

where 

R*l; = 1 (Isa) 

R* = _;!, 
8. 

V,, = :; E = min(v,cc,D). (15b) 

The largest diffusion parameter R* depends on the 
order of magnitude of the Prandtl and Schmidt 

numbers 

(16) 

The three possible alternatives are shown in Table I 
together with the orders of magnitude of the cor- 
responding diffusion measures. 

The regions corresponding to a different order of 
magnitude of Prandtl and Schmidt numbers are 
shown in Fig. 2; the plane O(Pr), O(Sc) is subdivided 
in three main regions, corresponding to cases (a), (b) 
and (c) of Table 1. Our analysis falls within region 
(a) : the smallest diffusion speed is the momentum one 

(a)n(c) j 

‘L j 
iSc10(1) SC1.OC/ 

cc, (a) 

FIG. 2. Partition of the plane O(R), O(Sc) in controlling 
diffusion regions. 

and the controlling transport number is the Reynolds 
number ; the ratios of the velocity BL thickness to the 

temperature and solute concentration BL thicknesses 
are equal to the square root of the Prandtl and 
Schmidt numbers, respectively, which are of order 
of magnitude less than or equal to one. 

Equation (Isa) is the first required relation between 
the unknowns V, and 1; and will be used to eliminate 
V, from criterion (14b) which thus becomes 

where the numbers 

are now defined in terms of the problem’s data only 
and will be referred to as ‘characteristic’ driving (vol- 
ume or surface) numbers. Rigorously speaking they 
are all ‘generalized’ Reynolds numbers and there are 
12 of them since each one is the ratio between one of 

the four driving characteristic speeds and one of the 
three diffusion characteristic speeds. 

To propose a rational and unified terminology for 
these characteristic numbers is a hopeless and, 
perhaps, useless task. It is indeed objectively difficult 
to convey, in a single name, the needed three classes 
of information : (1) the type of driving speed (volume 
or surface) ; (2) its genesis (thermal or solutal) ; (3) 

the type of diffusion speed (momentum, energy, solute 
mass). 

On the other hand, some names are too well 
rooted in classical usage to hope to change them; 
CT is called the Grashof number when F: = v and the 
Rayleigh number when E = c(. Sometimes G,. is called 
the solutal Grashof number or solutal Rayleigh num- 
ber, for F: = v and CC, respectively. Some have no name 
yet (e.g. Grand GC for E = D). 

We shall make a compromise by privileging the 
type and nature of driving speeds (the most im- 
portant feature. as it will be clear shortly). Volume 
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and surface characteristic driving numbers will be 
called Grashof and Marangoni numbers, respectively, 
whichever the type of diffusion speed involved in their 
definition. The nature of the driving action will be 
evidenced, when necessary and/or appropriate, by 
using the adjectives thermal or solutal. 

The ratios of the two volume and surface driving 
measures are equal to the ratios of the corresponding 
driving speeds. Hence, the problem’s data determine, 
in each specific case, the largest Grashof and Maran- 
goni numbers, denoted by G and M, respectively, with 

I G, if 

M, if 

M= 

( M, if 

!?!z 2 O(1) 
a,AC 

. (20) 
a,AT 
oc G O(l) 

c 

Criterion (14b) can then be formulated as 

max(lGl1& jM[li) = 1. (21) 

Its satisfaction depends on the order of magnitude 
of the number Z = IG(/IM14’3, also known from the 
problem’s data. If one lets 

IGI z = lM14,3 = Z&l (22) 

with Z, of order one, the following alternatives occur : 

(a) wI < 0 

IGI 
43 2 O(1). 
WI i 

(23) 

The largest driving action pertains to the volume 
phase ; criterion (14b) requires that 

IGIl; = 1 (24) 

and this uniquely determines the last unknown lo. The 
relative measure of the surface driving action is given 

by 

301i4 < O(1) (25) 

as required. 

(b) o, 20 

PI 
JM14’3 

< O(1). 

The largest driving action belongs to the surface 
phase ; criterion (14b) requires that 

IMIZ; = 1 (27) 

and the relative measure of the volume driving action 
is given by 

IGIG = $$ = Z&l < O(1) (28) 

as required. 
The determination of V, and 1, is thus completed 

and can be usefully summarized as follows : Criteria 
(14a) and (14b) establish the required two relations 
between V, and I, 

v, = v,1,2 (29a) 

v, = lV,ll”o. (29b) 

The first one (equation (29a)) relates V, to the smallest 
diffusion characteristic speed V, and always involves 
1i2. The second one relates V, to the largest driving 
characteristic speed V, 

Ivdl =max(~~lvml~I~gl) (30) 

where V, is the imposed velocity (zero in the present 
case) and involves a power (d) of I, which depends on 
its type (d = 0, 1,2, respectively) and not on its genesis 
(thermal or solutal). Solving equations (29a) and 
(29b) for I, and V, yields 

v = vdl(2+d’l vd12/(2+d) 
7 F (31) 

where 9, the largest driving number, as seen, is the 
‘generalized’ Reynolds number I V,, I/V, The bound- 
ary layer thickness varies with its inverse l/2, l/3 and 
l/4 power, respectively, for conventional boundary 
layers (V, = Vi ; d = 0), Marangoni boundary layers 

(Vd = Vm, or Vm, ; d = l), natural boundary layers 
( Vd = V,, or VP, ; d = 2). In the ‘classical’ case the 
largest driving speed is the imposed velocity Vi and 
the reference velocity is just this driving speed. In the 
present case V, is smaller than the driving speed, also 
involves the characteristic diffusion speed as it is equal 
to the weighted mean of the largest characteristic driv- 
ing speed and the smallest characteristic diffusion 
speed. 

The expressions for V, and I,, have thus been found 
for all the possible cases defined by the orders of 
magnitude of a priori known characteristic number. 

In any specific case, the smallest diffusion coefficient 
(E) determines the relevant largest diffusion charac- 
teristic number Rand hence, the diffusion speed enter- 
ing the definition of the relevant largest driving 
characteristic number (G or M) which in turn, deter- 
mines the normal scale factor as its l/3 and l/4 power, 
respectively. 

For each pertinent expression of the diffusion 
characteristic number there are 

possible cases partitioned in four classes ; each one 

4 
grouping the i 

0 
cases in which (i) characteristic 

numbers are of the same order of magnitude. 
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Table 2. Classification of free convection boundary layers in terms of number and types of non-vanishing driving actions 
and corresponding similarity constraints. The driving number assumed to define the scale factor I, is circled 

M, ([j = 2S3i) 0 

G 0 M, (7 = 2S3i.) 0 

0 0 MT 0 MT M,, 0 MC 
(B = 2-3/q (/I = :’ = 2-31,) (;’ = 2-32) 

G, MT 0 Gc M, M, 0 G, Mc 0 0 G‘ 
0 

b=2-3Ay=l-41 ,$-I /j=7=5 %= -I ;‘=5 V/I ;’ = I-4;. 

When two or more characteristic driving numbers 
are of the same order of magnitude the actual choices 

made in defining G or M are irrelevant on account of 
the introduction of the temperature and concentration 

scale factors to, cO. 
We shall adopt the following conventions : 

(a) preference is always given to surface over vol- 
ume driving numbers and to thermal over sol&al 

characteristic numbers ; 
(b) the values of characteristic driving numbers 

which are not of the largest order of magnitude are 
simply set equal to zero since here we are only inter- 

ested in first-order boundary layer theories. 

According to the latter convention we have : 

MBL-the two Grashof numbers are equal to zero ; 
NBL-the two Marangoni numbers are equal to 

zero ; 
CBL-at least one Grashof and one Marangoni 

number are different from zero. 

The 15 possible cases are shown in Table 2. The top 
row represents the three types of MBLs, the left- 
most column the three types of NBLs. All other rows 
and columns represent CBLs (at least one Grashof 
and one Marangoni number diRerent from zero). 

In the table there are also shown: (a) the driving 
number assumed to define the normal scale factor lo ; 
(b) the similarity conditions given, in each specific 
case, by the sum of those indicated in the cor- 
responding top row and left-most column. 

4.1. Determination of temperature and concentration 

scale fhctors 

presence of still undetermined temperature and con- 

The orders of magnitude one, which should have 
appeared in the formulation of Napolitano’s criteria, 
have been replaced by equality to one in view of the 

centration scale factors. To determine their signs and 
values we use the criterion of maximum normalization 

of the mathematical formulation (12,13) in the simi- 
larity plane so as to minimize the number of numerical 
solutions needed to cover all the physically relevant 

cases. Furthermore, the normalization process should 
also take into account that the positive orientation of 
the variable x has been assumed to be in the sense of 
increasing 0 or decreasing pgY, according to whether 
the surface or the volume driving action prevails. 

To achieve this goal the more efficient strategy is to 
normalize the interface boundary conditions and use 
the remaining undetermined scale factors, if any, to 
normalize the momentum balance equation (the other 

two are already normalized). Temperature and con- 
centration fields are readily normalized by setting 

g(0) = h(0) = 1. 
Let, for any non-zero quantity 

q = 141 sgn q where sgn q = L- 1 forq 2 0. (32) 

Upon equations (l), (I If) and (1 I g) it is 

dx = AT~,t,[Jx”~ ’ +ACo,c,y.x’~ ’ (33a) 

where the right-hand sides are proportional to surface 
and volume driving actions. They will be used to deter- 
mine the positive orientation of x. In the case of natu- 
ral convection, the positive direction of (x) is deter- 
mined, by convention, that the driving action, 
(Ap/p,,)g,, is positive. In the other cases of Marangoni 
and combined convection, the positive direction of 
the axis (x) is chosen in the sense of the increasing 

surface tension, i.e. dcr/dx > 0. 

\-m--/1 ~~~ L 

On denoting by Z(f) the left-hand side of equation 
(12a1. the eauations to be normalized can be written 
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as 

-2(f) = A.gXP+4~-‘+ACjX7+41~‘, 

A, = G&t,, A, = G&co (344 

-f”(O) = M,l~t”BxB+‘3”~*+M,l~c,yx’+‘“-* 

(34b) 

where G,, G, and M,, M, are defined, respectively, 
in equations (I 8a) and (18b). 

According to our convention, for NBLs it is M, = 
M, = 0 and IG(li = 1. Equation (34b) is already 
normalized to zero and the scale factors can be 

used to normalize equations (34a). The relevant driv- 
ing action is the volume action. The positive orien- 

tation of the x coordinate must be determined by 
equation (33b) which requires, upon the assumed 

positivity of ATand AC, that either 

or 

sgn (8&g.J = + 1 W4 

sgn &cOg.J = + 1. 

The constants AT and A, are given by 

IGTI 
A7. = sgn (G,t,) m It01 

IGJ 

WI 

A, = sgn (Gcco) m- lcOl 

(36a) 

(36b) 

and, when diKerent from zero, can be normalized 
to *1. 

In all the remaining 12 cases at least one Marangoni 
number is different from zero so that IMlli = 1, the 
relevant driving action is the surface action and the 
positive orientation must be determined by equation 
(33a) requiring that either one or both of the following 
sign relations apply : 

sgn (oTtOB) = + 1, sgn (cr,cO~) = + 1 (37a, b) 

according to whether thermal, solutal or both Maran- 
goni driving actions prevail. 

The interface boundary condition (34b) can be nor- 

malized by putting, on account of equations (37) 

_f”(o) = IMA Itol WI + IMcl ICC4 IYJ = 1 
WI IN 

(38) 

and the constants A, and A, are given by 

IGrl 
AT = sgn (Gdd IM14’3 Id (394 

4 = w (GCCO) ,F c lGc’ I “I Wb) 

unless they are equal to zero. 
Whenever a Marangoni number is equal to zero the 

corresponding constant can be normalized to one. 
For instance when IV, = 0 and G, # 0 the second 
equation (37b) does not apply, (t,,J = l/lpi upon equa- 
tion (38) and A, = 1 with 

w (cd = sgn (G,). 
p414’1 

lcol = ~ 
IG,( (40) 

All possible alternatives for A, and A, are sum- 

marized in Table 3. 

5. DISCUSSION 

5.1. Marangoni boundary layers (MBLs) 
The mathematical formulation of the similarity 

problem is 

f”‘+(l -i.)A‘“-(1-2i)f”* = 0, 

f(0) = f’( c(l) = 0 ; .f”(O) = - I (41a) 

g”+Pr[(l -/?)fg’-jf”g] = 0, g(0) = I ; g(x) = 0 

(4lb) 

h”+Sc[(l -J)fh’-yf’h] = 0, h(0) = 1 ; h(m) = 0. 

(4lc) 

The same relation (fl = 2 - 31; y = 2- 32) holds 
between i and the parameters /l and y defining inter- 
face distribution of temperature and solutal con- 

centration. The momentum equation is uncoupled 
from the energy and concentration equations and the 

one-third law for the boundary layer thickness applies 

with IM I Ii = 1. The non-dimensional velocity field in 
the similar plane depends only on the parameter i. that 
can only have a value different from 2/3 (1 = y = 0, 
constant temperature and solutal concentration on 

the interface). The one parameter class of functions 
f(&q) satisfying equation (41a) is thus the same as 
that found in ref. [2] for the single-diffusive thermal 
MBL. The nature of the boundary layer (thermal, 
solutal, double-diffusive) influences only the scale fac- 

tors lo, t,, co and establishes the same relation 
(fl = 2 - 31. ; y = 2 - 3i) between i and the parameters 
b and y defining the temperature and solutal dis- 

tribution on the interface. Any function,f(i., a) can be 
interpreted as the non-dimensional stream function of 
either a thermal MBL with /3 = 2- 3i, or a solutal 
MBL for y = 2 - 32, or a double-diffusive MBL for 
/j = 7 = 2-3i. For 3. = 2/3 (p = 0), 1 = l/3 (fi = 1) 

surface gradients of temperature and/or solutal con- 

centration vanish or are constant. respectively; for 
i, = 0 (p = y = 2) the boundary layer thickness is con- 
stant [2]. The situation illustrated in Fig. 1 cor- 
responds to different alternatives for gT, fl and f,. The 
temperature gradient on the interface, is given, on 
account of equations (8b), (1 Id) and (37a), by 

T,(.u,O) = -sgn (c7.) It,,1 l/?lAT.$ ‘. (42) 

When cry > 0, T, (x. 0) is negative, surface particles 
move from warmer to colder regions, and the hot tem- 

perature TH is that of the upper wall. The opposite 
occurs for crT < 0: surface particles move toward 
warmer regions, and the hot wall is the lower one. The 
other two equations in problem (41) have identical 
structure. A two-parameter family of solutions 
F(Q, 1.) of the problem 
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I f’(O)=-1 

MARANGONI AND COMBINED BL I 

M lo3 -1 M-Max [M,, M, I 

I - Sgn(to MT) =I 

114 (2-31) =I ItJ (Z-31) = ; 

Sgnk,M,) -1 -_) 

1 MTlli-l I “,I’: 

MT MT MC M, 

!3 -2-31 p-y-2-31 y-2-31 

F”+Q[(l -I.),l’F’-(2-3i.)f”F] = 0 (43a) 

F(0) = I ; F(;c) = 0 (43b) 

with ,f‘(q) satisfying problem (41a), represents either 
the temperature (Q = Pv) or concentration (Q = SC) 

profiles in the similarity plane. 
5.1.1. Sin& difisioe MBL. For thermal MBL it is 

M = M,; MC = 0 and lMTli: = I. The temperature 

scale factor is given by 

1 
h = ,a, w (PJ~). 

Its sign is equal to that of (P(T~) and thus it is adjusted 
to render the surface driving force always positive for 
any sign of ran and the similarity parameter /I’ (i.e. the 
sign of the scale factor to is chosen in such a way that 
the (x) axis is always oriented in the sense of increasing 
surface tension). The concentration protile need not 
be similar. When the solute concentration follows a 
power law, the exponent y can be arbitrary and the 
similar profile is a solution of problem (41~). The scale 
factor c,, is arbitrary and can thus be normalized to 
+ I. Analogous remarks apply for solutal MBL. 

I ‘CO)=0 

Cio4=l 

5. I .2. Double-difJtisive MBL. The two Marangoni 
numbers are of the same order of magnitude and is 
still lM71 1: = I and, as already said, p = ;I = 2-31,. 

The two scale factors are given by (see equations (35) 
and (38)) 

I 1 
t,, = 2181 sgn @or), ~0 = y,jl sgn @cc.). (45a, b) 

Their signs, once again, are chosen, consistently with 
our convention of drrldx > 0, to account for any sign 

of CT,., o( and of the similarity parameter /?. 

5.2. Natural boundary la,vers (NBLs) 
The similarity formulation is given by equation 

(34). with homogeneous interface boundary con- 
ditions and the constants A,, A,. normalized to zero 
or & I. The one-fourth boundary layer power law 
holds. The orientation of the x-coordinate is always 
in the sense of the motion, and changes in signs of the 
thermodynamic coefficients bT, PC are accounted for 
in the temperature and concentration scale factor 

t,,. (‘Il. 
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5.2.1. Single-diflisive NBL. 
Thermal NBL. The scale factors I0 and t, are given 

by: 1, = ]GT(-“4; t, = f 1 with the positive sign 

applying for /?Tg.Y > 0; A, = 1 and Ac = 0. Momen- 

tum and energy equations are coupled, and velocity 
and temperature profiles depend on the two parameter 
family of solutions of the problem 

fti’+(1-1)fS”-(1-21)f’Z+F= 0, 

f(0) = f”(0) = f’(co) = 0 (46a) 

F”+Q[(l -n)fF’-(1-41)f’F] = 0, 

F(0) = 1; F(a) = 0 

withF=gandQ=Pr. 

(46b) 

The concentration profiles are determined sub- 

sequently and need not be necessarily similar. If the 

surface distributions of solute concentration is of the 

power type x’c,h(n) the equation to be solved is 

h”-t SC [(l -1)f!l’-YYh] = 0, 

h(0) = 1 ; h(m) = 0. (47) 

It depends on the Schmidt number and on the arbi- 

trary similarity parameter y. The solute distribution is 
simply normalized with c0 = +_ 1. 

Solutal NBL. This case is the dual of the preceding 
one. The scale factors are given by I, = ]Gc] ‘j4; 
c,, = _t 1 and the positive sign applying for flcgr > 0 ; 
A, = 0 and A, = 1. The momentum equation is 

coupled with the concentration equation and the 
problem is still mathematically described by equations 
(46) where now Q = SC and F = h. The temperature 
profiles can be determined subsequently and the same 

remarks, already made, apply. 
5.2.2. Double-dzjiisive NBL. The two Grashof num- 

bers G, and Gc are of the same order of magnitude, 

the similarity parameters are given by 

lo = ]G,(-“4; to = +l; 

IGTI l/W AT co=+-=+-- 
IGCI IA-I AC 

(48) 

where the positive sign applies for BTgl: > 0 and 
AT = 1; A, = sgn (&&). The thermal buoyant 
characteristic speed on the interface is always positive. 
The intensity of the solutal buoyant characteristic vel- 

ocity is measured in terms of the thermal one and 
normalized to one. The constant A, measures the 

ratio of the two volume driving actions and is equal 
to plus or minus one according to whether they act in 
the same or in opposite directions. All three equa- 
tions are coupled and the mathematical formulation 

of the problem reads 

f”+(l-n)fS”-(l-2L)f’*+gfh = 0 

g”+Pr[(l-I)fg’-(l-41)f’g] =0 

h”+Sc[(l-~)fh’-(1-41)f’h] = 0 

subject to the normalized boundary conditions 

W) 

(49b) 

(49c) 

f(0) = fl(cn) = f”(0) = 0 (504 

g(0) = h(0) = 1 (50b) 

g(co) = h(co) = 0 (5Oc) 

where the plus or minus sign applies on the right-hand 

side of the first equation according to whether brand 
/&have the same sign (concurrent or opposite driving 
actions). 

5.3. Combined boundary layers (CBLs) 
In the remaining nine cases both types of driving 

actions are present and thus they share some of the 
features described when dealing with MBL and NBL. 
We shall discuss them according to the number of 

driving actions (volume and surface) present. 

5.3.1. Four or three driving actions. In these cases, 
as Table 2 shows, there is only one type of similar 
solution characterized by the following values of the 
similarity parameter : I = - 1 ; ji’ = y = 5. Since either 
none or only one driving number vanishes the bound- 

ary layers always exhibit the double-diffusive charac- 

ter which is induced by either volume or surface 
driving actions. The boundary layer thickness can be 

indifferently described as following the l/3 or l/4 
power law since in these cases it is always 

IGI 
(M(4i3 = O(1). (51) 

The mathematical formulation of the similarity prob- 

lem reads 

f”‘+2~-3f’2+Arg+Ach = 0, 

f(0) = f’(m) = 0; f”(0) = - 1 (5la) 

g” + Pr [Zfg’ - Sf’g] = 0, g(0) = I ; g( co) = 0 

(51b) 

h”+Sc[2fh’-5f’h] = 0, h(0) = 1; h(m) = 0 

(51c) 

where the constants A,, A, can be 5 0 depending on 

the type of driving action which induces the double- 
diffusive character and can never vanish simultane- 
ously. The case A, = Ac = 0 falls within the class of 
MBLs for /I = y = 5. 

5.3.2. All four driving actions present. The double- 

diffusive character is induced by both surface and vol- 
ume actions, the system (5 1) is completely coupled ; 
the orientation of x is determined by the sign of G, 
and it is as in Fig. 1 for grpT > 0. The constants A, 
and Ac are both different from zero and it is 

hence they are positive when the corresponding vol- 
ume and surface driving actions have the same sign 
(concurrent). 
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5.3.3. Three driving actions present. One must dis- 
tinguish if the vanishing number is a volume or a 
surface driving number. 

Vanishing of a volume driving number. Since both 
M, and M,. are different from zero, all remarks made 

when discussing double-diffusive MBLs apply as 
being specialized to the case b = 1/ = 5. In particular 

the l/3 power law applies with ]MT] 1: = 1. The only 
quantities to be determined arc the constants A, and 
A,,. The two cases G, = 0, G, = 0 are dual. When 
G,, = 0 it is 

where the positive sign apphcs if fi7.qr and r~r have 

the same signs (aiding volume and surface driving 

actions). Momentum and energy equations are 

coupled. The concentration field can be subsequently 
determined : it must satisfy equation (51~) with ,f(q) 

solution of the problem (51a), (51b). Analogous 
remarks apply for the dual case G, = 0. 

Vanishing of a surface driving number. Vanishing 
of a surface driving number allows one constant to be 

normalized to I 

M<.=O*A,.= I (54a) 

M,=O=A.= I. (54b) 

The system remains completely coupled : its solution 

depends on three parameters : the numbers Pr, SC and 
the other constant. The I/3 power law holds with 
the normal scale factor lo determined by the non- 
vanishing Marangoni number, and the same con- 

siderations made when discussing single-diffusive 
MBLs apply. The constant different from one is given 

by 

A 
I 

= + ! !f,l 
- 5 ]M,.]4’3’ 

A = + ! ..~IG”l 
( - 5 ]M,I”I-’ (55a b) 

where the positive sign applies when [I,.g, (respectively 
&gr) is of the same sign as LT(. (respectively or) (sur- 
face driving action aiding with the volume driving 

action of the other nature). 

5.3.4. One volume and one swface non-vanishing 

driving actions. These four cases complete the list of 
15 possible cases. Combined boundary layers of these 

classes share the features of the Marangoni and 

natural boundary layers, as neither the momentum 
equation nor the ,f”(O) boundary condition are 
homogeneous. 

Single-diffusive. Volume and surface actions are of 
the same nature (either thermal or solutal). The two 
cases are dual and, for conciseness. we shall consider 
the case M,. # 0 and indicate in parenthesis conditions 
referring to the dual case. The temperature (con- 
centration) exponent is fixed to 5 while that of con- 
centration (temperature) remains arbitrary. The orien- 
tation of x is determined by the sign of ~,(a,), and is 
directed as in Fig. I when g7 > 0 (a,. > 0) ; the normal 

scale factor is equal to ]MJ Is3 (]Mc]-’ ‘), the other 
parameter to(co) is equal to + l/5, where the positive 
sign applies for (or > 0 (oc > 0). There is only a non- 
vanishing constant 

and the positive sign applies when fl,y,(/j,,g,) and 
u7.(cc) have the same sign (concurrent volume and 
driving actions). Velocity and temperature (con- 

centration) profiles are coupled and result from the 
solution of the system 

f”” + 2,ff”’ - 3.f”’ + A, F = 0, 

f’(0) = f’(m) = 0; f”(0) = - I (57a) 

F”+Q[2,fF’-5,fF] = 0, F(0) = I ; F(a) = 0 

(57b) 

where F, A,, F. Q are equal to ,9, A,, Pr (h, A,, SC). 
The solution of the concentration (temperature) field 
subsequently does not need to be similar and, if it is, 
satisfies the following problem parametered in SC (Pr) 

and the arbitrary constant ;,(/I) 

h”+Sc[2j’h’-y,f”h] = 0. h(0) = 1 : h(o) = 0 

(.9”+ Pr [2fy’-B,f“g] = 0, g(0) = 1 ; g(x) = 0). 

(58) 

The scale parameter co(to) is arbitrary. 
Double diffusive. Volume and surface non-van- 

ishing driving numbers are of a different nature (one 
thermal and one solutal) and of the two constants A,, 

A,, one vanishes and the other is equal to one. Once 
again the two cases are dual and to discuss them we 
shall proceed as before. Both parameters a and y arc 
free but they are connected by a relation ; for M, # 0 
(M,. # 0) it is 48- 37 = 5 (4~ ~ 38 = 5), they are equal 
only for [j = 7 = 5; the orientation of the .y-coor- 
dinate is determined by the sign of cr(o(.) and is 
directed as in Fig. I for crT > 0 ((TV > 0). The normal 
scale factor is I, = ]M, 1 ’ ‘(1(, = IM,.J ’ ‘) ; the tem- 

perature (concentration) scale parameter to(r’,,) is 
given by 

with the positive sign applying for (or > 0 (a,. > 0) ; 
the other scale parameter is given by 

and the positive sign applies when pG,.M,(yG,-M,,) is 
positive; A,.(AT) vanishes and AT(A,-) is equal to one. 
Velocity and temperature (concentration) profiles arc 
coupled and result from the solution of the system 

,f”’ + (1 - i)fl” - (I - 2i)f“’ + F = 0, 

f(0) = f”(W) = 0; j”‘(0) = - I (59a) 
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F”+Q[(l-n)f’F’-(2-3A)f’F] = 0, 

F(0) = 1 ; F(a) = 0 (59b) 

where for MC # 0 (M, # 0), F, Q, are equal to g, Pr, 
(h, SC). The solutions constitute a two-parameter (2 
and Q) family. As before, the solution of the con- 
centration (temperature) field can subsequently be 
done and the previous remarks apply. For similar 
interface distributions the problem to be solved for 
M,#O(M,ZO)is 

h”$-SC (1 -/I)fh’- 
[ 

5+h 1 = 0, 

h(0) = 1 ; h(m) = 0 

( i g”+Pr (1 -l)fg’- T’f.s I = 0, 

g(0) = 1 ; g(o0) = 0 (60) 

for arbitrary non-vanishing b(y). 

6. NUMERICAL RESULTS 

The field equations have been solved via a quasi- 
linearization method [14] and numerical results 
obtained for each type of boundary layer (Marangoni, 
natural, combined) when driving actions, either of the 
same nature (single-diffusive BL) or of a different 
nature (double-diffusive BL), are present. Since local 
(interface velocity, heat and mass transfer bulk 
coefficients) and global (displacement thickness) 
properties on the interface are expressed in terms of 
the i g, and h derivatives evaluated at 4 = 0, and 
of the asymptotic value f(co), the numerical values 
obtained for these quantities have been tabulated for 
various Prandtl and Schmidt numbers and different 
values of the similarity parameter. 

The dimensional interfacial velocity U(X, 0) is pro- 
portional to the 1’ derivative J“(0) 

U(X, 0) = V,x”~2”‘~(0). (61) 

Heat and mass transfer bulk coefficients are expressed 
in terms of local non-dimensional parameters, namely 
the Nusselt and Sherwood numbers, defined respec- 
tively as 

Nu. = _ (n-W,,=o 
.-I 

AT 
x = fl ,y(Ppi+ “g’(O) (62a) 

0 

sh = _(n-VCLO 

..r 
AC 

x = F x(‘-“+ “h’(O) (62b) 
0 

so that they are proportional to the g and h derivatives 
g’(O), h’(0). The displacement thickness, defined as 

cl* = lox” s p f’m ~ o .f’(o> dv = iox ,.fo 
f ‘(0) 

(63) 

is proportional to the ratio S(m)/f’(O). 
In the case of the Marangoni boundary layers (see 

Section 5.1) the nature of the boundary layer (thermal, 
solutal, double-diffusive) does not influence the result- 
ing mathematical problem, which consists of the two- 
point non-linear problem (41a) for the function f(q) 
and problem (43) for the temperature and the con- 
centration in the similarity plane. Numerical solutions 
of this problem have been already found in ref. [2], 
whose results, for different values of the simiIarity 
parameter (p = 0.5, 1,2) and various Prdndtl 
numbers, can be also applied to the double-diffusive 
case (F(v) = g(q) or F(V) = h(q) according to 
whether Q = Pr or SC) by considering that the simi- 
larity variable (rO) and the corresponding function 
fo(q,,), introduced in the above quoted reference, are 
linked to q, f(q) (present work) by the transformation 

q = (1 -A)- I.‘$/” (63a) 

f (VI = (1 -w2’3fo(ro). (63b) 

Table 4 reports numerical values of f’(0) and f(a) 
for j ranging from 1 to 10. In the case /3 = 2 (constant 
boundary layer thickness) there is an exact solution 
of problem (41a) : f(u) = 1 -eq. 

Tables 5(a) and (b) summarize the results obtained 
in the case of natural (Table 5(a)) and combined 
(Table 5(b)) single-diffusive boundary layers (equa- 
tions for f(q) and F(q) coupled, with F(q) equal to 

g(q) or to h(q)). 
Table 5(a) shows the numerical values off“(O),g’(O) 

and f(co) for various Prandtl numbers and different 
values of the parameter p, in the case of the thermal 
NBL. The dual case of solutal NBL can be formally 
obtained by substituting the Prandtl number (Pr) with 
the Schmidt number (SC), g(v) with h(q) and B with 
y. The effect of increasing Prandtl number, at given p, 
results in the reduction of the velocity level and in the 
thinning of the thermal boundary layer, whereas heat 
transfer at the interface increases. In the case of com- 
bined Marangoni and natural convection the effect 
of aiding surface tension and buoyancy driven flows 
results in increasing interface velocity and heat trans- 
fer, compared to the flow driven by Marangoni or by 
natural convection only. 

The results shown in Table 5(b) coincide with those 
obtained in ref. [5], if one considers that the similarity 
variable (qO) and the functionf,(q,) considered in the 
above reference are linked to q,f’(q) (present work) 
by the transformation 

‘I = 2290 (64a) 

f (rl) = 2-2~3foho). (64b) 

In the case of double-diffusive natural boundary lay- 
ers (see Section 5.2) all three equations (momentum, 
energy and concentration) are coupled and the solu- 
tions constitute a three-parameter (R, Pr, SC) family. 
The numerical results corresponding to the two cases 
of aiding and opposing thermal and solutal driv- 
ing actions are reported in Tables 6(a) and 7(a), 
respectively. 

When the actions (thermal and solutal) are aiding, 



1016 L. G. NAPOLITANO et ul. 

Table 4. Numerical values of f’(0) and f‘(a) for different 
values of the similarity parameter /?, for MBLs 

li f’(0) .fW) 

I 1.296 1.481 
2 1.000 1.000 
3 0.864 0.783 
4 0.782 0.656 
5 0.723 0.570 
6 0.679 0.508 
7 0.644 0.460 
8 0.615 0.423 
9 0.591 0.392 

IO 0.570 0.366 

-f."'+(I-j.)ff"-(l-21)1." z 0, i, = <iljGh 

boundary conditions: ,f(O) = 0, f”(m) = 0, ,f”(O) = -1. 

Iz(q,A, Pr = a, SC = b) is equal to g(q,l, Pr = b, 

SC = a), so that the quantitative investigation has 

been performed for the Prandtl number ranging from 
0.1 to 10 with SC > Pr (these values cover a wide class 
of liquid mixtures of interest). Numerical values of 

j”(O), -g’(O), -h’(O), f(x) calculated in the case of 
aiding thermal and solutal actions are considerably 
higher than those corresponding to the case of oppos- 

ing actions. Increasing the Schmidt number, at given 
Pr and b, confines the buoyancy effect, due to solute 
concentration differences, to a thinner solutal boun- 

dary layer : therefore, velocity and heat transfer decrease 
for aiding thermal and solutal driving actions (Table 

6(a)) and increase for opposing actions (Table 7(a)), 

whereas mass transfer increases vs Schmidt in both 
cases. The effect of Prandtl number is the same found 
for single-diffusive BL : increasing Prandtl, heat trans- 
fer increases, but interface velocity and mass transfer 
are reduced. Typical profiles of the functions ,f’(q), 
g(q) and h(q) in the similarity plane are reported in 
Figs. 3-5 for double-diffusive NBLs with different 
values of the parameter /j, with Pr = 0.7 and SC = 7. 

The case fi = - 315 corresponds to the rising plume 
flow considered by Gebhart and Pera [4], whose 
results can be found from our calculations. for 

this particular value of 1, applying the following 
transformations 

(65a) 

(65b) 

where the subscripts (0) refer to Gebhart and Pera 

variables. In this case (A = 2/5) the solution for g(q) 

and h(q) is 

&/) = e Z’~‘+F(ri) (66a) 

&/) = e -3,5.%F(rl) 
(66b) 

F(q) = 

s 
” .f(q) dq : g’(0) = h’(O) = 0. (66~) 

0 

Table 5. Numerical values of f’(O), g’(0) and 11~~) for different Prandtl numbers, at different /I’, for thermal natural (a) 
and combined (b) boundary layers 

(a) 

/I=1 p = 5 /r= 10 
Pr f“(O) -g’(O) f(s) f’(0) -g’(O) .f(m) ./‘(O) -g’(O) f(L) 

0.1 0.833 0.312 2.666 0.488 0.486 1.450 0.361 0.586 0.993 
0.5 0.703 0.674 1.523 0.413 1.04 0.78X 0.306 I.254 0.524 
I 0.633 0.926 1.179 0.373 I.425 0.606 0.276 1.712 0.402 
5 0.47 I 1.859 0.788 0.278 2.832 0.405 0.206 3.396 0.268 

IO 0.408 2.472 0.698 0.241 3.756 0.359 0.179 4.502 0.238 
I5 0.374 2.912 0.654 0.22 I 4.419 0.337 0.164 5.294 0.224 

/““+(l~;.)ff”-(I-21,)I”‘+g=O, g”+Pr[(l-l),fg’-_,f’g] =O. i = (I -/?)/4, with boundary conditions: f(0) = 0, 
~‘(1’)=0.~(0)=O.g(O)=l,g(zc)=0. 

(b) 

Pi, /“(O) -g’(O) f(m) 

0. I 0.944 0.563 I.545 
0.5 0.884 1.356 0.88 1 
I 0.853 1.971 0.724 
5 0.794 4.587 0.61 I 

IO 0.776 6.541 0.597 
15 0.768 8.038 0.592 

,f‘“‘+2fl-3,r’+g = 0. g”+Pr[2fg’-55f“g] = 0, with 
boundary conditions: .f(O) = 0. ,f’(m) = 0. f”(0) = -I, 
g(O) = I. ,9(m) = 0. 
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Table 6. Numerical values of f’(O), g’(O), h’(0) and ,f(~) for different Prandtl and Schmidt numbers at different b, for 
double-diffusive natural (a) and combined (b) boundary layers with aiding thermal and solutal driving actions 

(a) 

/I=1 p=5 p= 10 
Pr SC f’(O) -g’(O) -h’(O) f(m) f’(0) -g’(O) -h’(O) .f(a) .f’(O) -g’(O) -h’(O) .f(m) 

0.1 0.1 1.183 0.371 0.371 3.694 0.690 0.579 0.579 1.938 0.513 0.696 0.696 1.307 

0.2 1.148 0.356 0.542 3.310 0.670 0.559 0.837 1.728 0.496 0.675 1.000 1.169 

0.5 1.096 0.341 0.876 3.149 0.641 0.538 1.337 1.650 0.477 0.647 1.597 1.127 

1 1.056 0.333 1.243 3.102 0.617 0.525 1.886 1.641 0.459 0.632 2.251 I.111 

2 1.017 0.327 1.760 3.076 0.595 0.516 2.646 I.612 0.440 0.622 3.161 1.094 

5 0.971 0.322 2.793 3.055 0.567 0.506 4.120 I.601 0.420 0.610 4.926 1.087 

8 0.951 0.320 3.432 3.047 0.555 0.503 5.168 1.596 0.411 0.606 6.179 1.084 

10 0.942 0.319 3.823 3.044 0.550 0.501 5.756 1.594 

15 0.541 0.499 7.000 1.592 

1 2 0.847 1.061 1.560 1.298 0.499 1.637 2.382 0.658 0.370 1.967 2.857 0.442 

5 0.792 1.019 2.441 1.245 0.467 1.574 3.075 0.630 0.346 I .892 4.438 0.424 

8 0.768 1.003 3.061 1.230 0.453 I.548 4.638 0.623 0.336 1.861 5.554 0.419 

IO 0.758 0.996 3.407 1.224 0.446 1.537 5.159 0.621 

12 0.749 0.990 3.720 1.220 0.442 1.529 5.629 0.618 0.327 1.838 6.739 0.416 

15 0.740 0.984 4.139 1.216 0.436 1.519 6.262 0.615 0.323 1.826 7.496 0.414 

10 12 0.566 2.910 3.199 0.823 0.334 4.422 4.858 0.41 1 

15 0.553 2.875 3.548 0.810 0.327 4.369 5.383 0.404 0.248 5.30 5.82 0.280 

20 0.538 2.833 4.054 0.796 0.318 4.306 6.146 0.397 0.242 5.237 6.449 0.275 

30 0.519 2.780 4.895 0.779 0.306 4.225 7.415 0.388 

.f”‘+(l -A)#“,-(1-2i)f’2+g+h = 0, g”+Pr[(I-E.).fg’-Ir.f’g] = 0, /I”+Sc[(l-i)j’h’-yf’h] = 0, % = (l-8)/4, 
‘; = /I’, with boundary conditions: -f’(O) = 0, ,f’(m) = 0. f’“(0) = 0, g(0) = I, g(co) = 0, h(O) = 1, h(m) = 0. 

(b) 

Pr SC f’(O) 

0.1 0.1 I.090 
0.2 1.076 
0.5 1.050 
I I .030 
2 1.014 
5 0.994 
8 0.986 

IO 0.982 
15 0.976 

1 2 0.932 
5 0.909 
8 0.899 

10 0.895 
12 0.892 
15 0.888 

10 12 0.82 1 
15 0.817 
20 0.812 

-g’(O) -h’(O) /‘(co) 

0.638 0.638 1.981 
0.619 0.946 1.787 
0.599 1.567 1.712 
0.588 2.273 1.691 
0.581 3.271 I.680 
0.574 5.250 I.672 
0.572 6.673 I.669 
0.571 7.475 1.668 
0.570 9.180 1.667 
2.08 1 3.078 0.757 
2.040 4.960 0.737 
2.028 6.326 0.732 
2.020 7.090 0.730 
2.018 7.780 0.728 
2.013 8.714 0.727 
6.743 7.419 0.610 
6.720 8.310 0.607 
6.70 1 9.617 0.604 

f”‘+2y-3p+g+!-l= 0, g” + Pr [2fg’ - Sf’g] = 0, 
h”+Sc [2fh’- 5f’h] = 0, with boundary conditions : 
.f(O) = 0, f’(m) = 0. .f”(O) = - 1, g(0) = I, ,9(m) = 0, 
h(0) = 1, h(ni) = 0 

For b > - 3/5, g’(0) < 0, h’(O) < 0, i.e. for t, > 0 and 
c,, > 0, energy and mass of solute diffuse from the 
liquid to the gas ; for j = -3/5, g’(0) = 0, h’(O) = 0, 
i.e. the interface is adiabatic and with zero mass trans- 
fer ; for /J’ < - 3/5, g’(0) > 0, h’(O) > 0, i.e. energy and 
mass of solute diffuse toward the liquid. The same 
features are shown in Figs. 6 and 7, where numerical 
values off’(O) and -g’(O) are plotted vs the Schmidt 
number for Pr = 0.7 and different values of fl. For 
/I = -3/5, g’(0) is identically equal to zero, for 
/l < -3/5 (respectively p > -3/5) it is positive 

(respectively negative) and increases (respectively 
decreases) for increasing Schmidt numbers. 

Results for the more complex case of double-diffus- 

ive combined boundary layers are shown in Tables 
6(b) and 7(b) corresponding to aiding and opposing 
thermal and solutal driving actions, respectively. Since 
in this case all possible driving actions are present 
(volume and surface; thermal and solutal), the results 
obtained confirm many features already described 
when dealing with the cases discussed before. In par- 
ticular, the effect of increasing Schmidt number is 
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Table 7. Numerical values of j’(O), y’(0). h’(O) and ,f’(a) for different Prandti and Schmidt numbers at different jj. for 
double-diffusive natural (a) and combined (b) boundary layers with opposing thermal and solutai driving actions 

Pi SC 

0. I 0.2 
0.5 
? 

; 
8 

I 2 
s 
8 

I’ 
1; 

10 II 
ii 
30 
30 

Y(O) 
ii= 1 

-q’(O) -h’(O) f’(O) 

0.215 0.213 0.305 2.362 0.160 
0.434 0.259 0.599 2.782 0.25 i 
O.SY4 0.288 i .382 2.930 0.346 
0.669 0.297 2.305 2.967 0.390 
0.699 0.301 2.915 2.979 0.407 
0.278 0.653 0.935 0.9x3 0.164 
0.408 0.779 1.791 1 .OYO 0.240 
0.453 0.815 2.387 I.115 0.267 
0.484 0.839 3.022 I.130 0.285 
0.4YY 0.849 3.43 1 1.136 0.294 
0.109 I ,304 I .43 I 0.393 0.064 
0.106 1.577 I .937 0.475 0.095 
0.205 1.779 2.529 0.532 0.121 
0.249 I .Y5Y 3.420 0.579 0.147 

[S = 5 

M’(O) /i’(O) 

0.325 0.461 
0.396 0.X97 
0.445 2.072 
0.462 3,459 
0.461 4.467 
0.992 1.414 
1.189 2.707 
1.247 3.606 
I .2x3 4.566 
1.300 5.183 
I.978 2.169 
2.391 2.936 
2.698 3.R3 1 
2.972 5.171 

./(x) f ‘(0) 

I .270 O.llS 
I.458 0,185 
1.533 0.256 
I.553 0.288 
1.559 0.301 
0.490 0.121 
0.548 0.178 
0.560 0.198 
0.568 0.21 I 
0.572 0.218 
0. I x0 0.048 
0.224 0.070 
0.255 0.090 
0.280 0.109 

p= IO 
-y’(O) -h’(O) 

0.388 0.550 0.876 
0.474 1.071 0.993 
0.535 2.474 I.042 
0.555 4.132 I.055 
0.562 5.337 I.059 
1.189 1.692 0.332 
1.426 3.239 0.370 
1.495 4.315 0.378 
I.540 5.464 0.384 
1.560 6.202 0.386 
2.369 2.598 0.134 
2.865 3.516 0.162 
3.233 4.588 O.lXI 
3.560 6.200 0.197 

f‘“‘+(i-i.)/~“-(I-2i)1“‘+B-k=0, ,q”+Pr[(l-A)@‘-[j,f’.~]=O, h”+Sc[(l-i)f‘h’-;lf’h]=O. j.= (I--/{)/4, 
; = ii. with boundary conditions: j (0) = O./‘(x) = 0. f”(O) = 0. g(O) = I, y(p) = 0, /r(O) = 1. /2(-f) = 0. 

0)) 

PI, SC 
- _~_.. 

0.1 0.2 
0.5 
, 

; 
x 

1 3 
5 
x 

12 
15 

IO 12 
15 
20 
30 

i”(O) --d(O) -A’(O) f(X) 

0.770 0.476 0.730 L ,459 
0.813 0.517 1.333 1.591 
0.864 0.544 2.993 1.637 
0.889 0.552 4.945 I .647 
0.889 0.555 6.358 I .65 1 
0‘760 1.831 2.722 0.664 
0.791 I .888 4.600 0.692 
0.x03 1.907 5.950 0.699 
0.81 1 I .920 7.?Y? 0.702 
0.815 I .925 8.328 0.704 
0.728 6.312 6.947 0.564 
0.733 6.337 7.x3x 0.567 
0.738 6.365 9.142 0.571 
0.745 6.398 11.329 0.583 

,j’“‘+2#,-3f”‘+g-/I = 0, 4’# + Pr [2.f$- 5,l”g] = 0, 
h”+ SC [2,/‘/i’- 5,f’h] = 0. with boundary conditions : 
r’(0) = 0. f ‘(‘XJ) = 0, f”‘(O) = - I. g(O) = 1. ,q(r- ) = 0, 
h(0) = I. /I( x,) = 0. 

0 0.5 1. 1.5 2. 2.5 3. f’ 3.5 

FIG. 3. Profiles of .f’(q) in the similarity plane for natural boundary layers (NRLs) at different values of 
the similarity parameter fl, when aiding thermal and solutal driving actions are present. The Prandtl and 

Schmidt numbers are equal to Pr = 0.7, SC = 7. 
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0 0.2 0.4 0.6 0.8 1. 1.2 1.4 g 1.6 

FIG. 4. Profiles of g(n) in the similarity plane for natural boundary layers (NBLs) at different values of the 
similarity parameter b, when aiding thermal and solutal driving actions are present. The Prandtl and 

Schmidt numbers are equal to Pr = 0.7, SC = 7. 

0 1 2 3 4 
h 

5 

FIG. 5. Profiles of h(q) in the similarity plane for natural boundary layers (NBLs) at different values of the 
similarity parameter p, when aiding thermal and solutal driving actions are present. The Prandtl and 

Schmidt numbers are equal to Pr = 0.7, SC = 7. 

4 

r\. 

pJ 

3,s 
$=-1 

x * 
~+--Y------x 

3 

2,5 1 

f’(0) 2 
x+---~ p =- 315 Plume flow (Gebharf and Pera 1971) 

x 
1.5 

x x 

0 b 

0 1 2 3 4 5 6 7 8 9 10 

SC 

FIG. 6. Profiles off’(O) vs Schmidt number for natural boundary layers (NBLs) at different values of the 
similarity parameter /?, when aiding thermal and solutal driving actions are present. The Prandtl number 

is equal to Pr = 0.7. 
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0.5 -- 
p =-3/s Plume flow (Gebharl and Pera 1971) 

0 x-xx-x~x~x b 

(I 1 2 3 4 5 
SC6 7 8 9 10 -g’(O) -0.5 -- 

-1 -- 

-I,5 -- 
13=-1 x x 

-2 -- F’* 

ex 

-2,5 --/ 

Y 
-3 - 

FIG. 7. Profiles of -y’(O) vs Schmidt number for natural boundary layers (NBLs) at different values of 
the similarity parameter fi. when aiding thermal and solutal driving actions are present. The Prandtl 

number is equal to Pr = 0.7. 

seen to be the reduction or the increasing of interface 
velocity and heat transfer, for aiding or opposing ther- 

mal and solutal driving actions, respectively, whereas 
the solutal boundary layer thickness decreases and 

solute mass transfer increases. At given SC and /I, 
velocity levels and solute mass diffusion are reduced 
by increasing the Prandtl number, whereas heat trans- 

fer increases. Combined convection corresponds to 
higher velocities, heat and mass transfer, when com- 
pared to the case of pure Marangoni or natural con- 

vection, due to the effect of aiding surface tension and 
buoyancy driven flows. Finally, velocity, heat and 

mass transfer, in the case of aiding thermal and solutal 
actions. are considerably higher than those cor- 
responding to the case of opposing actions. 

The values of .f”(O). corresponding to CBL and 

to the analogous case of NBL with j = ;I = 5 are 
compared in Figs. 8 and 9, where f’(0) is plotted vs 

Schmidt and various Prandtl numbers, in the case of 
aiding (Fig. 8) and opposing (Fig. 9) actions, respec- 
tively. For any value of SC, f’(0) (i.e. the interfacial 
velocity) for CBL is higher than for NBL, and, for 

each type of BL, attains higher values in the case of 

aiding thermal and solutal effects. 
This behaviour is summarized in Fig. 10. con- 

cerning CBL and NBL for Pr = 0.1, in both situations 

of opposing and aiding thermal and solutal driving 
actions; ,f’(O) increases for opposing and decreases 

for aiding thermal and solutal driving actions, since 
the species diffusion buoyancy effects, as SC increases. 
is confined more and more near the interface region 
(and thus the corresponding solutal driving action is 

reduced). 
Analogous considerations apply to the values of 

the g derivative g’(0) (related to the local Nusseh 
parameter). Figures 1 I and 12 show that g’(0) 

0.1 

i 

Pr=lO 
___x _..... -___~~--X--- _..... _~_______.__ _____-----x 

o x__...~---;’ 
b 

2 4 6 a 10 12 14 16 

SC 

FIG. 8. Profiles of .f’(O) vs Schmidt number for natural (NBLs) and combined (CBLs) boundary layers at 
various Prandtl numbers with aiding thermal and solutal driving actions. In the case of NBLs the exponents 

of the temperature and concentration are equal to 5. 
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Pr=O.1 

f’(0) 0.7 -- 
0 

b..._ 
0,6 --A --0.-_.... 

'A. 

0.5 --";, 
. . 

‘~-~~~~~~_____~__~__~~..~~..,..~_~~~.~~~~~!..~~ 

“-A-.-.... Pr= 1 
. . 

-._ 
-““~~~--.---..~..~....~...~........~............~ NBL 

0.4 -- 
x-.... 

-“‘---x..__....... 
-X . . . . . . . . X_.~ . . . . . . . ..P.=.==?O... 

0.3 -I b 

0 2 4 6 6 10 12 14 16 

SC 

FIG. 9. Profiles of f(0) vs Schmidt number for natural (NBLs) and combined (CBLs) boundary layers at 
various Prandtl numbers with opposing thermal and solutal driving actions. In the case of NBLs the 

exponents of the temperature and concentration are equal to 5. 

A 
1,1 -- 

1 -- g+h 0 

0.9 -- CBL 0 

0.8 -- 

0.7 -- 

f(0) 
O-o-.... 

0,6 -- ‘-----~-.~-..._............... 
O_~___ . .._...._ g?.! 

. . . . . 0 

0.5 -- NBL 

0.4 eh ’ 
0.3 

-- ~~__~__~_______._.~~~~~....-O---~-----~-~----- 
-- ,.-- 

,O.:- 

0,2 --d’ 

0-t ’ F 

0 1 2 3 4 5 6 7 a 

SC 

FIG. 10. Profiles of f(0) vs Schmidt number for natural (NBLs) and combined (CBLs) boundary layers 
with aiding (gf h) and opposing (g-h) thermal and solutal driving actions. In the case of NBLs the 
exponents of the temperature and concentration are equal to 5. The Prandtl number is equal to Pr = 0.1. 

..~ . . . . . . . . NBL 

2 CBL 1 A 

1.6 

0.6 
yiGG1 ______________~_~__._--------o----------_.......~.............~ 

0,4 b 

2 4 6 a 10 12 14 16 

SC 

FIG. 11. Profiles of -g’(O) vs Schmidt number for natural (NBLs) and combined (CBLs) boundary layers 
at various Prandtl numbers with aiding thermal and solutal driving actions. In the case of NBLs the 

exponents of the temperature and concentration are equal to 5. 
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FIG. 12. Profiles of -y’(O) vs Schmidt number for natural (NBLs) and combined (CBLs) boundary layers 
at various Prandtl numbers with opposing thermal and solutal driving actions. In the case of NBLs the 

exponents of the temperature and concentration are equal to 5. 

increases or decreases vs Schmidt number according 
to whether the solutal and thermal driving actions are 
aiding or opposing, and the heat transfer is higher for 
CBL than for NBL. 

The mass transfer, expressed by the h derivative 
h’(O) (related to the local Sherwood parameter), 
increases vs Schmidt number in both cases of aiding 
and opposing thermal and solutal actions (Figs. 13 

and 14). 
The influence of the Prandtl number on the flow 

and transport properties at the interface is shown in 

the diagrams of Figs. 8-14. As the Prandtl number 

increases, heat transfer increases (Figs. 11 and 12), 
whereas the interfacial velocity (Figs. 8 and 9) and the 

mass transfer (Figs. 13 and 14) decrease since thermal 

buoyancy effect, at high Prandtl numbers, is confined 

more deeply near the interface. The effect of volume 
driving numbers (thermal and solutal) is shown in 
Table 8, where, for given Prandtl and Schmidt num- 
bers (Pv = 1 ; SC = 5) numerical results are reported 
for A, and A, (coefficients in equations (51)) ranging 
from 0 to 1, in the case of double-diffusive CBL. 

Velocity, heat and mass transfer are enhanced by 

increasing the thermal (A.) or the solutal (A,.) volume 
driving action. The case A(. = 0 represents the situ- 

ation in which only one volume driving action (the 
thermal one) is present, whereas for A7 = A,. = I the 
thermal and solutal driving forces have the same order 

of magnitude. 
The higher values of the solute mass transfer par- 

6 

-h’(O) s 

4 

3 

2 

------ NBL 

0 I -4 

0 2 4 6 8 10 12 14 16 

SC 

FIG. 13. Protiles of -h’(O) vs Schmidt number for natural (NBLs) and combined (CBLs) boundary layers 
at various Prandtl numbers with aiding thermal and solutal driving actions. In the case of NBLs the 

exponents of the temperature and concentration are equal to 5. 



Double-diffusive boundary layers along vertical free surfaces 1023 

Pr=O. 1 
Pr=l 

Pr=lO 

Pr=O. 1 

Pr= 1 
-h’(O) 

FIG. 14. Profiles of -h’(O) vs Schmidt number for natural (NBLs) and combined (CBLs) boundary layers 
at various Prandtl numbers with opposing thermal and solutal driving actions. In the case of NBLs the 

exponents of the temperature and concentration are equal to 5. 

ameter [-h’(O)], with respect to the heat transfer par- 
ameter [-g’(O)], are related to the higher value of SC 
with respect to Pr. However, as discussed before, the 
roles of Pr and SC, A, and A,, can be interchanged 

in interpreting the results, by interchanging cor- 
respondingly the roles played by the temperature and 
solute concentration fields. With respect to this, it is 
important to remember that the present analysis has 

been limited to Prandtl and Schmidt numbers of order 
of magnitude less than or equal to one. Further quan- 

titative investigations will be needed to cover the other 
regions of the plane (Pr,Sc) (see Fig. 2), where Pr 

Pr= 1, Sc=5 

.f“(O) -,d(O) -h'(O) .f(s) 
~_____ __- 

0.760 I.815 4.48 1 0.624 
0.778 1.840 4.539 0.632 
0.794 I.864 4.594 0.640 
0.810 1.887 4.647 0.648 
0.826 1.909 4.697 0.655 
0.794 1.874 4.598 0.664 
0.810 1.896 4.650 0.671 
0.825 1.918 4.701 0.677 
0.841 1.938 4.749 0.684 
0.855 1.958 4.795 0.690 
0.825 1.925 4.702 0.696 
0.840 I .946 4.751 0.703 
0.855 1.965 4.794 0.708 
0.869 1.984 4.842 0.714 
0.883 2.002 4.885 0.719 
0.853 1.971 4.798 0.726 
0.868 1.990 4.843 0.729 
0.882 2.008 4.886 0.735 
0.896 2.026 4.928 0.740 
0.909 2.040 4.960 0.745 

.f+22.ff‘“-3.~Z+Arg+Ach = 0, g”+Pr[2fg’-5f’g] 
= 0, h” + SC [2,fh’ - 5f’h] = 0, with boundary conditions : 
./‘(O) = 0. f’(X) = 0, .f’“(O) = - 1. g(0) = I, g(;c) = 0. 

AT ‘4,. 

0.25 0 
0.25 
0.5 
0.75 
I 

0.5 0 
0.25 
0.5 
0.75 
1 

0.75 0 
0.25 
0.5 
0.75 
1 

1 0 
0.25 
0.5 
0.75 
1 

_ 

Table 8. Numerical values off’(O), g’(O), h’(0) andf(a) for 
different A ,and A,, for double-diffusive combined boundary 

layers 

and/or SC are of order of magnitude greater than one 

and the relevant transport numbers are (Re Pr) or 
(Re SC) according to the pertinent expression of the 
diffusion characteristic !,peed (thermal or solutal). The 

analysis of these regimes will be the object of future 
works. 

7. CONCLUSIONS AND FINAL COMMENTS 

A unified approach to free convection (natural, 

Marangoni, combined) boundary layers along vertical 
free surfaces has been presented when the (volume 
and surface) driving actions are due to volume differ- 
ences and surface gradients of temperature and solute 
concentration. 

For each class of free convection similar solutions 

have been derived and characterized, on the basis 
of a rigorous order of magnitude analysis. For each 
pertinent expression of the diffusion characteristic 
number (depending on the orders of magnitude of the 
Prandtl and Schmidt numbers) the 15 possible BL 
regimes have been partitioned in four classes, each 

one grouping the 
4 

0 
. cases in which (i) characteristic 
1 

driving numbers are of the same order of magnitude. 
The similarity conditions, the pertinent expressions 

for the scale factors and the field equations have been 
specified and discussed for each type of BL. 

An important and original contribution of the work 

is represented by the mathematical formulation in 
the similarity plane, which has been devoted to the 
normalization of the interface boundary conditions 
and of the balance equations, in order to minimize the 
number of numerical solutions needed to cover all 
the physically relevant cases. In this way, all possible 
alternatives for the numerical values of the driving 
numbers influence only the scale factors and not the 
field equations, so that the quantitative investigation 
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can be performed by solving only one problem for 
each type of BL. 

In the particular case of MBLs. it has been found 
that the mathematical formulation of the similarity 
problem for a single-diffusive (thermal or solutal) BL 
is the same as for a double-diffusive BL. Any function 
,/‘(2.,9) can be interpreted as the non-dimensional 
stream function of either a thermal or a solutal BL 
with equal driving actions, or of a double-diffusive BL 
if the thermal and solutal driving actions are 
opportunely weighted by means of the temperature 
and concentration scale factors. 

Natural boundary layers have been investigated by 
considering only the problem (49), (50), rather than 
solving the field equations for different values of the 
Grashof numbers as performed, for instance, by 
Gebhart and Pera [4] in the case of double-diffusive 
boundary layers along rigid walls. 

For each type of BL we have obtained velocity. 
temperature and concentration profiles in the simi- 
larity plane; Bow and transport properties at the 
liquid-gas interface (interfacial velocity, heat and 
mass transfer bulk coefficients) have been given 
for a wide range of Prandtl and Schmidt numbers and 
different values of the similarity parameter. 

Even if the present study is focused on plane bound- 
ary layers along vertical liquid--gas interfaces, the for- 
mulation developed here can be extended to a BL 
along horizontal free surfaces, either for uncoupled 
or for coupled flow fields of the two interfacing fluids 
(i.e. for liquid-gas and liquid----liquid configurations). 
In this work temperature and concentration on the 
free surface have been assumed to be known power 
functions of the (x) coordinate, and for the asymptotic 
conditions at the infinite, the simplest case of uniform, 
quiescent outer regions has been considered. Next 
works will be devoted to the study of more complex 
coupled situations (Row problems in liquid bridges 
and/or shallow cavities), where the distributions of 
the thermofluid dynamic properties on the interface 
are unknown, and the flow field variables are assigned 

only ia the initial section x = 0 and at the infinite 
(non-quiescent outer regions, either non-dissipative 
or dissipative). Other problems of the theory of MBLs 
to be investigated include unsteady flows, corner 
boundary layers, as well as the stability of the already 
studied MBLs. 
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COUCHES LIMITES DOUBLEMENT DIFFUSIVES LE LONG DE SURFACES 
VERTICALES LIBRES 

Rbmk-On traite la convection naturelie doublement diffusive (ou thermosolutalef, c’est-a-dire con- 
vection due aux forces de flottement (convection naturehe) et gradients de tension de surface (convection 
de Marangoni}, avec differences de volume, de tem~rature et de concentration de solute aux surfaces. 
L’attention est port&e sur les couches limites formces le long dune interface verticale liquide-gaz, lorsque 
les nombres de transport adimensionnels caracteristiques sont suIIisamment grands, de facon que ie 
flottement et la tension interfaciale conduisent des tcoulements dans des cavites ouvertes diiTi?rentiellement 
chauffees et des ponts liquides. Des classes de solutions affines sont obtenues pour chaque classe de 
convection sur la base d’une analyse rigoureuse d’ordre de grandeur. Des profils de vitesse, de temperature 
et de concentration sont decrits dans le plan de similarite ; les proprietes d’tcoulement et de transport a 
Tinterface liquide-gaz sont obtenus pour un large domaine de nombres de Prandtl et de Schmidt et 

differentes valeurs du paramttre de similaritt. 
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DOPPELT-DIFFUSIVE GRENZSCHICHTEN ENTLANG EINER SENKRECHTEN 
FREIEN OBERFLACHE 

Zusammenfassung-Die vorhegende Arbeit behandelt freie Konvektion bei gekoppeltem Warme- und 
Stoffiibergang. Treibende Krifte sind dabei Auftriebskrafte (natiirliche Konvektion) und Ober- 
Aichenspannungsgradienten (Marangoni-Konvektion), die durch Temperatur- und Konzen- 
trationsgradienten in den Phasengrenzflachen hervorgerufen werden. Die Untersuchung konzentriert 
sich auf Grenzschichten, die sich entlang einer senkrechten Gas/Fhissigkeits-Phasengrenze ausbilden, 
wenn die angemessen definierten charakteristischen dimensionslosen TransportgriiDen grog genug werden. 
Beispiele fur derartige Grenzschichten sind Stromungen in differentiell beheizten, offenen Vertiefungen 
und an Fliissigkeitsbriicken, die von Auftriebs- und Oberflachenkraften angetrieben werden. Klassen 
von ahnlichen Losungen fur jede Situation werden mittels rigoroser Gr60enordnungsanalyse bestimmt. 
Geschwindigkeits-, Temperatur- und Konzentrationsprofile in der Ahnhchkeitsebene werden dargestellt. 
Fur einen groBen Wertebereich der Prandtl- und der Schmidt-Zahl sowie fur verschiedene Werte des 
Ahnlichkeitsparameters werden die Stromungs- und Transportparameter bestimmt : Geschwindigkeit in 

der Phasengrenze, Gesamtwirme- und -stoffiibergangskoeffizienten. 

TEl-IJIOBbIE H flM@@Y3BOHHbIE I-IOTPAHWIHbIE CJ’IOH BAOJIb BEPTklKAJIbHbIX 
CBO6OjJHbIX llOBEPXHOCTEfi 

thOTPI,,,~kk‘X,e~yIL(TCSl nu4@y3wn Tenna w MaCCbI npw KohhiHupoeaHHoB c~o6onwoii KOHBeKgUH, 

TE. KOHBeKQHH 38 CYeT IlOAMMHblX CHJI(eCTWTB~HHall KOHBeKUEiR)Ii 38 CWT rpzlJ&UieHTOB IlOBepXHOCT- 

HOI-0 HBTSKeHHR (KOHBeKUHR MapaHroHH), 06yCnOBneHHbIX Pa3HOCTblO 06S%OB U IIOBepXHOCTHb&fB 

rpannerwahni Tehfneparyp B rcoHuewpaukiii pacreopeHHor0 Bewec-rBa. OcHoBHoe BmiMamie o6pa- 
WaeTCIl Ha +O,,M&,pOBaHHe IIOrPaHHYHbIX CJlOeB BaOJtb BepTNKiUbHOii rpaHHI&bI pil3~eJIa XWKOCTb-ra3 

lTpH AOCTaTO'fHO 6OnbmHX 6e3pa3MepHbIX SHCJIIBX, XapaKTep&i3yIOIIUiX KOHBeKTHBHble TtYieHHII, B 

fse3aMKHyTbIx HarpeeaehfbIx nonocrrx B xcKuLu(rix h4omiKax. &IS Kamoro rma KoHneKqmi nonyveHbI 
KnaccbI nono6sblx peruem& IIpencraeneebr npo&inH cropocreii, TeMnepaTyp H xoriueHq9awfi B nnoc- 
KOCTTW no~ro6mt; nony9eHbl xapaKTepumiKt4 TeqeHHR u nepeHoca Ha rpaH5iue pasnena mimocmda3 

(CKOpOCTb Ha rpaHHuepa3nena u 06xhtHbIe K03@@ilUieHTbI Tenno- H MacconepeHoca)B UIHpOKOM ma- 


