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Abstract— This paper deals with double-diffusive {or thermosolutal) combined free convection, i.e. free
convection due to buoyant forces (natural convection) and surface tension gradients {(Marangoni con-
vection), which are generated by volume differences and surface gradients of temperature and solute
concentration. Attention is focused on boundary layers that form along a vertical liquid—gas interface,
when the appropriately defined non-dimensional characteristic transport numbers are large enough, in
problems of thermosolutal natural and Marangoni convection, such as buoyancy and surface tension
driven flows in differentially heated open cavities and liquid bridges. Classes of similar solutions are derived
for each class of convection on the basis of a rigorous order of magnitude analysis. Velocity, temperature
and concentration profiles are reported in the similarity plane ; flow and transport properties at the liquid-
gas interface (interfacial velocity, heat and mass transfer bulk coefficients) are obtained for a wide range
of Prandt! and Schmidt numbers and different values of the similarity parameter.

1. INTRODUCTION

In THE absence of imposed velocities and pressure
differences, convection in systems with fluid—fluid
interfaces may be due to volume driving forces (buoy-
ancy) and surface driving forces (Marangoni stresses).
Volume driving forces act in the direction of the gravi-
tational vector (g) and are proportional to density
differences. Marangoni stresses act on the interface
and are due to surface gradients of the interfacial
tension {g). Both may be generated by volume differ-
ences and surface gradients of temperature and/or
solute concentration.

In this paper we consider interface dissipative flows
of the boundary layer (BL) type, i.e. thin dissipative
layers that may form near free surfaces when the
appropriately defined transport numbers (Reynolds,
Peclet, etc.) are large enough [1].

Interface boundary layers will be called Marangoni
boundary layers (MBLs), natural (or buoyant)
boundary layers (NBLs) or combined boundary lay-
ers (CBLs), according to whether the driving actions
are due to Marangoni stresses, only, to buoyant forces
only or to both. A further classification is related to
the nature (thermal or solutal) of the driving actions.
A boundary layer will be called ‘singly-diffusive’ if all
driving actions are of the same nature (thermal or
solutal} or ‘double-diffusive’ if the driving actions are
of a different nature (thermal and solutal).

The theory of MBLs has been formulated, up until
now, only in the case of thermal free convection, so
that only singly-diffusive, thermal MBLs have been
investigated. Napolitano [1] carried out a systematic
derivation of the steady thermal MBL equations and
outlined a priori criteria for their applicability. Plane
thermal MBLs were analysed by Napolitano and
Golia [2], who addressed the question of the existence

and characterization of similar solutions, found simi-
larity classes and obtained numerical solutions both
in the case of uncoupled and coupled flow fields of
the two interfacing fluids.

In the case of axial-symmetric MBLs 3], by apply-
ing the Mangler transformation, the field equations
assume the same form as for plane motion, except
for the interface tangential momentum balance equa-
tion, in which the curvature radius of the interface
explicitly appears. In this case similar solutions exist
only if the equation of the interface is described by a
power law in the Mangler variable.

Natural boundary layers (NBLs) along fluid-fluid
interfaces have been investigated only for the freely
rising plume flow [4] when volume driving forces
(buoyancy) of different nature (thermal and solutal)
are present (double-diffusive NBLs). Similar solutions
of thermal CBLs have been analysed by Golia and
Viviani [5, 6].

Recently Batishchev [7] reviewed MBLs con-
sidering mainly the work done in the Soviet literature.
Addition to the paper of Batishchev and more details
on future research topics about MBLs can be found in
the review paper by Napolitano and Viviani {8].

Here we present a mathematical formulation for
the general case of interface boundary layers due to
volume and surface driving actions, both generated
by differences and surface gradients of temperature
and/or solutal concentration. The classes of Maran-
goni and combined boundary layers include, as par-
ticular cases, those already investigated of thermal
MBL [2] and CBL [5]. The class of NBLs, analysed
here for different values of the similarity parameter in
both cases of singly-diffusive and double-diffusive
boundary layers, includes the case of plume flows con-
sidered in ref. [4] (exponents of the power laws for the
temperature and concentration equal to —3/5) in their
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plane

k non-dimensional curvature tensor of the
interface

K curvature tensor of the interface

l(x) local normal scale factor

I constant normal scale factor

¥ solutal Marangoni number

M?¥%  thermal Marangoni number
n unit normal to the interface
P pressure

Pe}  solutal Peclet number

Pe%  thermal Peclet number

Pr Prandtl number
Re*  Reynolds number
Se Schmidt number

! non-dimensional temperature

Iy temperature scale factor

T temperature

AT  imposed temperature difference

u non-dimensional velocity component in
the x-direction

v non-dimensional velocity component in
the y-direction

v non-dimensional velocity vector

v velocity vector

NOMENCLATURE
¢ normalized solutal concentration V., component of velocity tangent to the
Cy concentration scale factor interface
C solutal concentration Vi mass diffusion speed
D mass diffusivity V, buoyant speed
b stream function in the similarity plane V..  Marangoni speed
17} temperature in the similarity plane V. reference velocity
g gravity vector v, thermal diffusion speed
'8 component of the gravity vector along x V. momentum diffusion speed
G¥  solutal Grashof number X non-dimensional arc length along the
G%  thermal Grashof number interface
h solutal concentration in the similarity ¥ non-dimensional Euclidean distance

from the interface.

Greek symbols

X thermal diffusivity

b power law exponent for the temperature

B, Be  coefficient of expansion with
temperature and solute concentration

v power law exponent for the
concentration

0 jump operator

o* boundary layer displacement thickness

n similarity variable

A power law exponent for the normal scale
factor

un dynamic viscosity

¥ momentum diffusivity

T non-dimensional pressure

I density

o equilibrium surface tension

64,0, rates of change of surface tension
with temperature and solute
concentration

v non-dimensional stream function

m power law exponent for the pressure

Vv nabla operator.

analysis of boundary layers along vertical solid walls.

The paper runs as follows: the basic assumptions
for the problem under study and the corresponding
field equations are presented in Section 2; the non-
dimensionalization process is then performed in Sec-
tion 3; Section 4 deals with the search and char-
acterization of similar solutions, according to a rig-
orous and coherent order of magnitude analysis. Such
a unitary approach determines, at the same time, the a
priori conditions, expressed in terms of the problem’s
data, for the existence of the different BL regimes
{Marangoni, natural and combined ; thermal, solutal,
thermosolutal) and the conditions for the existence of
similar solutions. All possible cases are presented in
Section 5, where the similarity conditions, the per-
tinent expressions for the scale factors, and the field
equations are discussed for each specific BL regime.
Numerical results are presented in Section 6. Final

comments and conclusions are outlined in the last
section.

2. BASIC ASSUMPTIONS AND FIELD
EQUATIONS

The geometry of the problem is shown in Fig. 1.
We shall consider steady, plane flows in the boundary
layer along the liquid side of the interface £ of a
plane liquid bridge, of extension L, paralle! to the
gravitational vector g; X and Y are dimensional Car-
tesian coordinates; x and y are non-dimensional
boundary layer coordinates with x the arc length along
%, and y the Euclidean distance from the interface
X. The end walls are maintained at a given positive
temperature difference AT = Ty, — T and there are
neither imposed velocities nor imposed pressure
differences.
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F1G. 1. Geometry of the problem.

The liquid is a Newtonian ideal binary mixture
with constant diffusion coefficients ; Soret and Dufour
effects will be neglected ; the Boussinesque approxi-
mation applies ; viscous dissipation is negligible. Free
convective motion is induced by Marangoni stresses
and buoyancy forces arising from temperature and
solute concentration gradients and/or differences. The
interface Z is modelled as a massless stream-surface
with two intensive degrees of freedom (temperature
and electrochemical potential), in thermal, mech-
anical and chemical equilibrium with the adjacent vol-
ume phases [9].

Momentum, energy and mass coupling between
liquid and gas phases, radiation effects and surface
irreversibility are assumed to be negligible.

The relevant state equations for the volume and
surface phases are assumed to be given, with the above-
mentioned thermal and chemical equilibrium hypoth-
esis of the surface phase, by

p=p[l=Br(T—T,) = Bc(C—Cy)]
6=0y,—0r(T~T,)—0c(C—Cy)

(1a)
(1b)

where p is the density, ¢ the equilibrium surface
tension, p,fBr, puBc and o4, o the constant rates of
change with temperature 7 and solute concentration
C of density and surface tension, respectively. The
subscript (h) denotes values pertaining to the hydro-
static state, assumed uniform and chosen as the ref-
erence state.

The curvilinear coordinate x is always directed in
the sense of the motion. The driving forces, for the
problem under study, are the buoyant force, (g/p,)Vp,
in the volume phase, and the surface gradient of g, on
the liquid—gas interface, which, upon equations (1a)
and (1b), are given by

(9/pw)¥p = —g(B:YT+ V)
Vio=—-0,;V.T—0.V.C

(2a)
(2b)

where V, denotes the surface gradient operator [10].
The directions of the driving actions depend on

the orientation of the temperature and concentration

gradients in the liquid, and on the signs of the ther-

modynamic coefficients o, o, Br, Bc. There are sev-
eral combinations of the signs and magnitudes of VT
and VC, and of the thermodynamic coefficients 64, o,
B+, B, which determine the direction of the motion in
the physical plane. The mathematical formulation we
shall derive in the next sections will be aimed at mini-
mizing the number of solutions, in the similarity plane,
able to cover all possible cases in the physical plane.
This will be done by using the criterion of maximum
normalization of the balance equations and of the
interface boundary conditions by means of scale fac-
tors, for the flow field quantities, the signs and values
of which account for the effective physical situation,
i.e. signs and magnitudes of Y7 and VC, o+, g, B,
Be.

With the above assumptions and positions the field
equations are the thermodynamic state equations (1a)
and (1b), the balance equations for the liquid and the
balance equations for the surface phase, represent-
ing the boundary conditions for the liquid balance
equations

V-V=0 (3a)
v-vv+pihvp= vV2V+£g (3b)
V.VT = aV’T (3c)
V-VC = DVC (3d)
nv=0 (4a)
dV)=0, Vi=mAV)An (4b)
olum-VV, =V - K)]+Vo =0 (4c)
T =0 (4d)

3C=0 (4e)

where 8 f = f(x.0%)— f(x,07) is the jump of fat the
interface, n its unit normal oriented toward the liquid
(see Fig. 1), K the curvature tensor of the interface T ;
P the pressure; u the dynamic viscosity; v, « and D
momentum, thermal and solute mass diffusivities, and
all other symbols have already been defined.
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3. NON-DIMENSIONAL FIELD EQUATIONS

3.1. General remarks

To put the field equations in the correct non-dimen-
sional form, the following facts must be taken into
account.

(a) The set of reference quantities cannot be chosen
arbitrarily a priori but must be determined, in terms
of the problem’s data only, from a rigorous and sys-
tematic order of magnitude analysis (OMA) of the
field equations.

(b) When dissipative layers along the interface are
present, the flow field is not isotropic. A physically
correct non-dimensional form of the field equations
must exhibit this anisotropy so that, in particular,
reference quantities for velocity and length in direc-
tions normal and parallel to the interface must be
allowed to be of different orders of magnitude (aniso-
tropic reference quantities for vectors and tensors).

(¢) The coordinate system has to single out
explicitly the direction field of the normal n to the
interface and the most natural choice is the parallel-
surface coordinate system (pscc) [10, 11], in which
one of the coordinates is the Euclidean distance from
% and the other two are arbitrary curvilinear coor-
dinates on X. In the subject case, the problem’s data
are appropriately combined in the set of seven charac-
teristic speeds defined by

Vo=t v 2t oy, = b Sa—¢)
CT e = b= (Sa—c
BAATIL? : :

S AC T IS Ve
, v

(AT (AC
. o ) Vv, = OZ(L,Q (7a,b)
T i ¢ i

and referred to as ‘diffusion’ speeds (5a)—(Sc), "volume
(or buoyant) driving’ speeds (6a) and (6b) and ‘sur-
face (or Marangoni) driving’ speeds (7a) and (7b). In
(6a) and (6b) g, denotes the component of the gravity
vector along x. The signs of the driving speeds depend
on those of the thermodynamic derivatives involved
in their definition. The values of the volume driving
speeds (6a) and (6b) may be limited by stability
considerations.

The ratios (L, /L) and (V. /V) between reference
lengths and velocities in directions normal and parallel
to the interface are of the same order, upon the con-
tinuity equation (3a). This common order of mag-
nitude will be referred to as the ‘normal scale factor’
and denoted by (/). In principle, reference quantities
can be cither constant (global non-dimensional for-
mulation) or functions of the coordinate on the sur-
face T (local non-dimensional formulation). Their
determination, on the basis of a rigorous OMA of
the field equations, leads to a constrained maximum
problem formulated, analysed and solved by Napo-
litano [12] for the case of constant reference quantities.

In this paper we present an extension of Napo-
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litano’s constrained problem to the case in which ref-
erence quantities are variable (local non-dimensional
formulation). After having formulated the vectorial
non-dimensional form of the field equations by mecans
of constant and isotropic reference quantities, we shall
perform, simultaneously, the appropriate order of
magnitude analysis and the search for similarity con-
ditions by introducing variable, non-isotropic, ref-
erence quantities. Such a unitary approach will deter-
mine, at the same time, the a priori conditions,
expressed in terms of the problem’s data, for the exis-
tence of the different BL regimes (Marangoni, natural
and combined) and the conditions under which simi-
larity prevails. The analysis will be limited to first
order in the asymptotic expansions. Second-order
boundary layer cffects will be considered in future
papers. The class of variation considered is the power
class : extension to the other class, such as the expon-
ential one, should be straightforward and will not be
considered in this paper.

3.2. Constant and isotropic reference quantities
Since there is no imposed pressure difference we let

1

V=Vv V= 7 \A (8a.b)
P=P,+pVir, T=T,+(AT) (8c,d)
C=Cy+(AC) (8e)

where, as said, AT is the imposed positive temperature
difference (Fig. 1), and AC the characteristic positive
concentration difference.

The non-dimensional equations and boundary con-
ditions for the liquid volume phase read

V¥-v =10 (9a)
Re* [v+V*v+ V¥n] = V¥*v — (G¥1+ G k)i, (9b)

Pe¥v-V*t = V¥ (9¢)

Perve Vic = V¥2¢ (9d)

n'v=_0 (9e)

v)=0, v,=(mAvV)AN 90
5[?}: —v, -k}—M;‘.sz—M;erc —0 (%)
ot =10 (%h)

Se=0 (%)

where k is the non-dimensional curvature tensor:
k = V*n; i, the unit vector of the x-axis.
The numbers therein appearing

Pet = . (10a)

(10b)
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Vi, Ve
—_— * =
v,’ Me=,

M% = (10c)
will be referred to as diffusion (10a), driving volume
(10b), and driving surface (10c) parameters, respec-
tively. The product of any driving parameter by any
diffusion parameter depends only on the problem’s
data: its order of magnitude is uniquely determined
for each specific problem.

4. ORDER OF MAGNITUDE ANALYSIS AND
SIMILAR SOLUTIONS

We unify the OMA and the search for similar solu-
tions by letting

n=px), (x)=1lx* (11a)
Y(x,p) = Lx" f(n) (11b)

u(x,y) = xU7 () (11c)

v(x,3) = Lx [ f (M —0-=2fm] (11d)
P(x,y) = —3x“n(n) (11e)

tx,y) = —tox’g(n) (11f)

c(x,y) = —coxX’h(n). (11g)

A prime denotes derivatives with respect to the simi-
larity variable #; /(x) is the local normal scale factor
and ¥(x,y) the non-dimensional stream function
W, =u; Y.= —v). The temperature and con-
centration scale factors, t, and ¢,, are constants of
order one. No pressure scale factor needs to be intro-
duced since no pressure differences are imposed. The
functions f(n), n(n), g(n) and A(y) are all of order
one. The constants 4, §, y, w characterize the power
laws assumed for the reference quantities. They will
have to be determined together with the unknown
constants V, and /,, from the OMA.

As the analysis shall be restricted to boundary layer
regimes, it will always be /, « 1. Temperature and
concentration scale factors will be used to suitably
normalize the field equations in the similarity plane.

In substituting equations (11) into equations (9),
we shall neglect terms in higher powers of /3, and we
assume that the interface maintains its hydrostatic
shape (small capillary number) and that the non-
dimensional principal radius of curvature of the inter-
face, scaled by L, is at least of order one [13]. All
terms involving the curvature tensor of the interface
will then represent second-order effects and disappear
from the first-order boundary layer equations.

Details of the substitution will be omitted and only
the final results, in terms of the leading order terms,
will be reported.

Field equations
f’”+(Re* 1(2]){(1 —A)ﬁm—(l _2/1)f/2
— }[inn’—wn]x“”*‘“*z’} = —(G#lﬁ)x(ﬂ*“‘”zog

—(GE ¥ Veoh  (122)

1007
n =0 (12b)
9"+ (PetIDI(1-)fg ~Bf gl =0 (l2)
W+ (PeEIDIA—DfH =y K =0. (12d)
Boundary conditions at the interface
fO =0 (13a)
= f7(0) = (M#15)x?**=21,84(0)
+(MEL)XxE34=Deyh(0)  (13b)
1(x,0) = t,x" g(0) (13c)
c(x,0) = —cox"h(0). (13d)

The additional boundary conditions needed follow
from the matching with the outer regions. We only
consider here the case of a quiescent, uniform outer
region. Non-quiescent outer regions [f'(c0) = 1],
either non-dissipative or dissipative, require a deeper
and more general analysis of the asymptotic expan-
sion techniques, applied to flow problems in liquid
bridges and/or shallow cavities, which will be con-
sidered in future works.

In the subject case the asymptotic conditions are all
homogeneous and read

S(e0) = g(0) = h(w) = n(c0) =0.  (13e)

Then the normal momentum equation implies
n(n) = 0, the flow field is isobaric and the terms in the
square bracket of equation (12a) disappear. For non-
quiescent outer regions [ f"(c0) = 1], the pressure field
would have the same distribution throughout the
boundary layer [z(c0) = 1], would be compatible only
with an inviscid outer region and the pressure simi-
larity exponent would be equal to 2(1 —24).

In equations (12) there appear products of /2 by
diffusion and driving volume parameters; in bound-
ary condition (13b) there appear products of /, by
driving surface parameters. They are the diffusion
measure numbers, on the left-hand side of equations
(12a), (12c) and (12d) and the driving measure num-
bers, on the right-hand side of equations (12a) and
(13b). It is seen that only driving measure numbers
influence the similarity conditions.

Napolitano’s constrained maximum criterion, as
adapted to the subject case, requires that : all measure
numbers be, at most, of order one, and the largest
driving measure number be set equal to one

max {Re* I3, Pe% i, Petl3} < O(1)  (14a)
max {|G}|I3, |GE 15, IM¥| Lo, IME|l,) = 1. (14b)

The similarity conditions will then require the van-
ishing of the x-exponent of all, and only, the terms
with measures of order one. The ratio of any two
diffusion measures depends only on the ratio of the
corresponding diffusion coefficients. Hence if we
denote by ¢ the smallest diffusion coefficient and by R*
the corresponding largest diffusion parameter (with
R* > O(1) since the analysis will be restricted to
boundary layer regimes), criterion (14a) is satisfied by
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Table 1. Different alternatives for the diffusion coefficients and corresponding orders of magnitude

of the diffusion transport parameters

Diffusion measures

Energy Solute mass
I3 [ N
Pr < O(1) Se < O(1)

Sc
1 — < O(1
Pr (1

Pr<om I
Se

Smallest
diffusion
coefficient Momentum
Case & ¢ R*[}
a £ =V 1
b > = ! o(1
e=a Pr S (1)
= — <
C & D Sc = 0(1)
letting
R*[} = (15a)
where
RE =V vt aemi D). (15b
=y Ve=pioe = min (v,o, D). (15b)

The largest diffusion parameter R* depends on the
order of magnitude of the Prandtl and Schmidt
numbers

(16)

The three possible alternatives are shown in Table 1
together with the orders of magnitude of the cor-
responding diffusion measures.

The regions corresponding to a different order of
magnitude of Prandtl and Schmidt numbers are
shown in Fig. 2 ; the plane O(Pr), O(Sc) is subdivided
in three main regions, corresponding to cases (a), (b)
and (c¢) of Table 1. Our analysis falls within region
(a) : the smallest diffusion speed is the momentum one

(c)

4
0(Pr)
’ //g‘ 2, (b)
P \ ", J\'Q.
/ J "Po
(a) Ao, (b)n(c)
Preotn) / .,
s ;
@n) 7 @)nb)n)
l/ 0(sc)
Pr» 0(1) 5
by 12200
(@) {c)
— -
gchO(l) Sc < 0(1)

© @

F1G. 2. Partition of the plane O(Pr), O(Sc) in controlling
diffusion regions.

and the controlling transport number is the Reynolds
number ; the ratios of the velocity BL thickness to the
temperature and solute concentration BL thicknesses
are equal to the square root of the Prandtl and
Schmidt numbers, respectively, which are of order
of magnitude less than or equal to one.

Equation (15a) is the first required relation between
the unknowns V, and /2 and will be used to eliminate
V. from criterion (14b) which thus becomes

max (|G7| 13, |G| I3, IMA L IMc|[5) =1 (17)
where the numbers
Gr= GIR* =27 G = GER* = (18a)
7T T V C C V,‘
Vs Vine
Mr=M$R*= 7" Mc=MER*= "7 (18b)

& 6

are now defined in terms of the problem’s data only
and will be referred to as ‘characteristic’ driving (vol-
ume or surface) numbers. Rigorously speaking they
are all ‘generalized” Reynolds numbers and there are
12 of them since each one is the ratio between one of
the four driving characteristic speeds and one of the
three diffusion characteristic speeds.

To propose a rational and uvnified terminology for
these characteristic numbers is a hopeless and,
perhaps, useless task. It is indeed objectively difficult
to convey, in a single name, the needed three classes
of information: (1) the type of driving speed (volume
or surface); (2) its genesis (thermal or solutal); (3)
the type of diffusion speed (momentum, energy, solute
mass).

On the other hand, some names are too well
rooted in classical usage to hope to change them:
G is called the Grashof number when & = v and the
Rayleigh number when ¢ = a. Sometimes G- is called
the solutal Grashof number or solutal Rayleigh num-
ber, for ¢ = v and «, respectively. Some have no name
yet (e.g. Grand G for ¢ = D).

We shall make a compromise by privileging the
type and nature of driving speeds (the most im-
portant feature, as it will be clear shortly). Volume



Double-diffusive boundary layers along vertical free surfaces

and surface characteristic driving numbers will be
called Grashof and Marangoni numbers, respectively,
whichever the type of diffusion speed involved in their
definition. The nature of the driving action will be
evidenced, when necessary and/or appropriate, by
using the adjectives thermal or solutal.

The ratios of the two volume and surface driving
measures are equal to the ratios of the corresponding
driving speeds. Hence, the problem’s data determine,
in each specific case, the largest Grashof and Maran-
goni numbers, denoted by G and M, respectively, with

AT
G, if gTAé > 0(1)
G= ¢ 19)
| BAT
<
Qlfﬁﬁc o)
AT
M, if :uc > o(1)
M= ¢ (20)
. o AT
M, if GoAC <o)
Criterion (14b) can then be formulated as
max (|G |14, |M|13) = 1. ¥3))

" Its satisfaction depends on the order of magnitude
of the number Z = |G{/|M|*?, also known from the
problem’s data. If one lets

_ 06,
= jagjen = 2ol

(22)
with Z, of order one, the following alternatives occur :
(a) , <0

d
M

= 0(1). (23)
The largest driving action pertains to the volume
phase; criterion (14b) requires that

IG|lg =1 4

and this uniquely determines the last unknown /,. The
relative measure of the surface driving action is given
by

lMl 1 — 3w,/
IM|13 =W=Z_g/41°3 <o (25
as required.
®) 0,20
G|
s < 0. (26)

The largest driving action belongs to the surface

phase ; criterion (14b) requires that
M5 =1 @n

and the relative measure of the volume driving action
is given by

1009

|G|

|G|13=W

= Zolgr < 0(1) (28)
as required.

The determination of ¥, and /, is thus completed
and can be usefully summarized as follows: Criteria
(14a) and (14b) establish the required two relations

between V, and /,
V.=Vi*
Vr = Ile l((l)‘

(292)
(29b)

The first one (equation (29a)) relates V, to the smallest
diffusion characteristic speed ¥, and always involves
I5 2. The second one relates V, to the largest driving
characteristic speed V4

[Val = max (V, [Vl [V]) 30)

where V; is the imposed velocity (zero in the present
case) and involves a power (d) of [, which depends on
its type (d = 0, 1, 2, respectively) and not on its genesis
(thermal or solutal). Solving equations (29a) and
(29b) for [, and V, yields

( % )I/(Z+d) <1>|/(2+d)
o= ==
RN 2

_ pdi2+d) 2/(2+d)
Vr - Vn/ |Vd| t

(3D

where 2, the largest driving number, as seen, is the
‘generalized’ Reynolds number |Vy|/V,. The bound-
ary layer thickness varies with its inverse 1/2, 1/3 and
1/4 power, respectively, for conventional boundary
layers (V. = V;; d = 0), Marangoni boundary layers
(Vg= Vu, or V,, ; d=1), natural boundary layers
(Va=V,, or Vs d=2). In the ‘classical’ case the
largest driving speed is the imposed velocity V; and
the reference velocity is just this driving speed. In the
present case V, is smaller than the driving speed, also
involves the characteristic diffusion speed as it is equal
to the weighted mean of the largest characteristic driv-
ing speed and the smallest characteristic diffusion
speed.

The expressions for V, and /, have thus been found
for all the possible cases defined by the orders of
magnitude of a priori known characteristic number.

In any specific case, the smallest diffusion coefficient
(¢) determines the relevant largest diffusion charac-
teristic number R and hence, the diffusion speed enter-
ing the definition of the relevant largest driving
characteristic number (G or M) which in turn, deter-
mines the normal scale factor as its 1/3 and 1/4 power,
respectively.

For each pertinent expression of the diffusion
characteristic number there are

oy
) <> =15
=1 \!
possible cases partitioned in four classes; each one

. 4 . . .
grouping the <z) cases in which (i) characteristic

numbers are of the same order of magnitude.
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Table 2. Classification of free convection boundary layers in terms of number and types of non-vanishing driving actions
and corresponding similarity constraints. The driving number assumed to define the scale factor /, is circled

My (f = 2-3)
G 0 Mc(y =2-35) 0
0 M 0
(B =12-34) p=7v=2-34 (y=2-31
G, . G (1) Gr M Gr
(B = 1-4) A= —1 Vy y=1 f=y=75 f=1—4L y=2-3: p=1-44
Go Gr Ge Gr Ge M, Gr Ge @ G,
(G=1-41) p=1 f=3=5 A=—1 p=y=5 A=—1 B=3=5 B=7=1-4
0 f® @ e ®
B=2-34y=1-41 A= -1 f=y=5 J=—1 y= -y

When two or more characteristic driving numbers
are of the same order of magnitude the actual choices
made in defining G or M are irrelevant on account of
the introduction of the temperature and concentration
scale factors ¢y, ¢,.

We shall adopt the following conventions:

(a) preference is always given to surface over vol-
ume driving numbers and to thermal over solutal
characteristic numbers ;

(b) the values of characteristic driving numbers
which are not of the largest order of magnitude are
simply set equal to zero since here we are only inter-
ested in first-order boundary layer theories.

According to the latter convention we have:

MBL—the two Grashof numbers are equal to zero ;

NBL—the two Marangoni numbers are equal to
zero

CBL—at least one Grashof and one Marangoni
number are different from zero.

The 15 possible cases are shown in Table 2. The top
row represents the three types of MBLs, the left-
most column the three types of NBLs. All other rows
and columns represent CBLs (at least one Grashof
and one Marangoni number different from zero).

In the table there are also shown: (a) the driving
number assumed to define the normal scale factor /,;
(b) the similarity conditions given, in each specific
case, by the sum of those indicated in the cor-
responding top row and left-most column.

4.1. Determination of temperature and concentration
scale factors

The orders of magnitude one, which should have
appeared in the formulation of Napolitano’s criteria,
have been replaced by equality to one in view of the
presence of still undetermined temperature and con-

centration scale factors. To determine their signs and
values we use the criterion of maximum normalization
of the mathematical formulation (12, 13) in the simi-
larity plane so as to minimize the number of numerical
solutions needed to cover all the physically relevant
cases. Furthermore, the normalization process should
also take into account that the positive orientation of
the variable x has been assumed to be in the sense of
increasing o or decreasing pg., according to whether
the surface or the volume driving action prevails.

To achieve this goal the more efficient strategy is to
normalize the interface boundary conditions and use
the remaining undetermined scale factors, if any, to
normalize the momentum balance equation (the other
two are already normalized). Temperature and con-
centration fields are readily normalized by setting
g(0) = A(0) = 1.

Let, for any non-zero quantity

g=|qlsgng where sgng= t1forq20. (32)
Upon equations (1), (11f) and (11g) itis
dO' fg—1 g—1
e ATo 1o x" "+ ACacoy X’ (33a)
Ap s .
P ATBrg. tog(mx"+ACBcg.coh(n)x’ (33b)
h

where the right-hand sides are proportional to surface
and volume driving actions. They will be used to deter-
mine the positive orientation of x. In the case of natu-
ral convection, the positive direction of (x) is deter-
mined, by convention, that the driving action,
(Ap/py) g, is positive. In the other cases of Marangoni
and combined convection, the positive direction of
the axis (x) is chosen in the sense of the increasing
surface tension, i.e. da/dx > 0.

On denoting by £ ( /) the left-hand side of equation
(12a), the equations to be normalized can be written
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as

_g(f) — Argx/!+4/‘.— i +A(‘hx-,v+4/1—l’

Ar = Gilite, Ac=Gclic, (34)
_f//(()) = Mrlglnﬁxﬁ+31—2+Mclgcoyx','+u~2
(34b)

where Gr, G- and M,, M are defined, respectively,
in equations (18a) and (18b).

According to our convention, for NBLs it is M, =
Mc=0 and |G|/j = 1. Equation (34b) is already
normalized to zero and the scale factors can be
used to normalize equations (34a). The relevant driv-
ing action is the volume action. The positive orien-
tation of the x coordinate must be determined by
equation (33b) which requires, upon the assumed
positivity of AT and AC, that either

sgn (Br1,9,) = +1 (35a)
or
sgn (Becog) = +1. (35b)
The constants A, and A are given by
|G
A7 = sgn(Grtp) ﬁ (2l (36a)
G|
Ac = sgn (Gcco)ﬁ l¢ol (36b)

and, when different from zero, can be normalized
to +1.

In all the remaining 12 cases at least one Marangoni
number is different from zero so that |M |/} = 1, the
relevant driving action is the surface action and the
positive orientation must be determined by equation
(33a) requiring that either one or both of the following
sign relations apply :

sgn (o7208) = +1, sgn(oceoy) = +1 (37a,b)

according to whether thermal, solutal or both Maran-
goni driving actions prevail.

The interface boundary condition (34b) can be nor-
malized by putting, on account of equations (37)

|Mel [t 1Bl | [Mclleol Iy

—f"0) = =1 (38
SO =" ] )
and the constants A, and A are given by
|G|
A7 = sgn (Gt,) W |2] (39a)
[A
Ac = sgn (Geeo) i leal  (39b)

unless they are equal to zero.

Whenever a Marangoni number is equal to zero the
corresponding constant can be normalized to one.
For instance when M. =0 and G, # 0 the second
equation (37b) does not apply, |¢,| = 1/|8} upon equa-
tion (38) and A, = 1 with
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M+
Gl -

sgn (co) =50 (Go). eyl = (40)

All possible alternatives for A4, and A, are sum-
marized in Table 3.

5. DISCUSSION

5.1. Marangoni boundary layers (M BLs)
The mathematical formulation of the similarity
problem is

[+ (A=A —(1=-24)f* =0,

fO) =f(x0)=0; [(O=-1 (la)
g'+Pri=4fg =B/ g1 =0, g(0)=1;g()=0
(41b)

W +Scl[(1=A)fh' —yf'hl =0, h0) =1;h(c0) = 0.
(41¢)

The same relation (f=2-31; y=2-31) holds
between 4 and the parameters f and y defining inter-
face distribution of temperature and solutal con-
centration. The momentum equation is uncoupled
from the energy and concentration equations and the
one-third law for the boundary layer thickness applies
with |M |13 = 1. The non-dimensional velocity field in
the similar plane depends only on the parameter 4 that
can only have a value different from 2/3 (8 =y =0,
constant temperature and solutal concentration on
the interface). The one parameter class of functions
S (4,n) satisfying equation (41a) is thus the same as
that found in ref. [2] for the single-diffusive thermal
MBL. The nature of the boundary layer (thermal,
solutal, double-diffusive) influences only the scale fac-
tors [y, t,, ¢, and establishes the same relation
(p =2—-34;y = 2—134) between 4 and the parameters
p and y defining the temperature and solutal dis-
tribution on the interface. Any function f(4, 5) can be
interpreted as the non-dimensional stream function of
either a thermal MBL with 8 = 2—34, or a solutal
MBL for y = 2—34, or a double-diffusive MBL for
p=y=2-3AL For2=23(=0),A=1/3B=1
surface gradients of temperature and/or solutal con-
centration vanish or are constant, respectively; for
4 =0(f =y = 2) the boundary layer thickness is con-
stant [2]. The situation illustrated in Fig. 1 cor-
responds to different alternatives for 6, f and ¢,. The
temperature gradient on the interface, is given, on
account of equations (8b), (11d) and (37a), by

Tu(x,0) = —sgn (a7) |1, [BIATX . (42)

When o, > 0, T,(x.0) is negative, surface particles
move from warmer to colder regions, and the hot tem-
perature Ty is that of the upper wall. The opposite
occurs for o, < 0: surface particles move toward
warmer regions, and the hot wall is the lower one. The
other two equations in problem (41) have identical
structure. A two-parameter family of solutions
F(Q, 2) of the problem
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Table 3. Outline of all possible alternatives for the different boundary layer regimes

[10)--1 1'(0)=0
MARANGONI AND COMBINED BL
3 _ BUOYANT BL
M =1 M=Max [MT, Ml
«— Sgn(t, M) =1
gnlty M) Gro“=1
It (2-33) - i 2-30 - % G-Max [l Gl 1G]
Sgn(coMC)=1 —
M 1
cj —C(2- e c - =
Ieql T (2730 =3 legl (2-33) -1
B=2-3% \7
»
_E v -2-30
33 ! !
SE
25 NIIT I
= gs] M
— C
2t ;
g= IMole g =1 Mg
<d
EE My Mt MC MC
" p-2-34 B=y=2-3) y=2-31
—
Gp M7 Gy MT MC Gy M¢ re -
N -1 B-5 V7Y A1 B-7- B-1-4x y=2-3% iy e
G G el
> AT-Sgn(G,IMrlll._T JREY I Sgn(GTM_J_ ApSen(Gy) =1 GI i 2|~
S 43 —_
Y I P A.=0 il A <0 AJSJJ i A !
@l v L - C T « o
R I A ¥ Gy G, M GpGe My M GTGCM o =
z - -
< g A=-1 B-7- SI X1 ﬂ-rls A=-1 B- I Jdz - T o I
> G ol T @ |5 S|
T R ArSen(G M=~ <cA=Sgn(cTer_.I“1;o ngn(Qr)—'l'-l‘gl =1 - M et
Im 5 e~
< £ Imf¥10 N sl - l s
[ * —_—
o ACngn(Gc)lf‘JLg()l: AC=Sgn(GcMC]|G_°|U31 A Sgn(GM)I__Ls_)o o
(-1 I I Y im] MY310 Imd* 5% ;
g, Ge M Gc Mr M Ge M, »
8y 5-2-31 y-1-4n | A1 B-7-5 =1 ¥5 vp 2] 0
bl =1 < : - |«
s e O wo  LIgE ] | 2
A, -sen(G )—r- - s 5 -2 =l
gn(6,) o =1[A_-5gn(GM, )_114’310<4A°_5gn[G°Mc|)M_c|«3ls 29 L r H
d
F'4+ QU —-NfF—Q2=-32)fF]=0 (43a) 5.1.2. Double-diffusive MBL. The two Marangoni
numbers are of the same order of magnitude and is
FO)=1; Fo)=0 (43b) g

with f(n) satisfying problem (41a), represents either
the temperature (Q = Pr) or concentration (Q = Sc)
profiles in the similarity plane.

5.1.1. Single diffusive MBL. For thermal MBL it is
M=M;; M.=0 and |M,|!} = 1. The temperature
scale factor is given by

1
ty = sgn (Bo). (44)

Bl

Its sign is equal to that of (Bo,) and thus it is adjusted
to render the surface driving force always positive for
any sign of g and the similarity parameter f§ (i.e. the
sign of the scale factor 7, is chosen in such a way that
the (x) axis is always oriented in the sense of increasing
surface tension). The concentration profile need not
be similar. When the solute concentration follows a
power law, the exponent y can be arbitrary and the
similar profile is a solution of problem (41c). The scale
factor ¢, is arbitrary and can thus be normalized to
+ 1. Analogous remarks apply for solutal MBL.

still |M,|!3 = 1 and, as already said, f =y = 2-34.
The two scale factors are given by (see equations (395)
and (38))

I
foo= e - o). (45a,b
0 2001 sgn(for), co= 2|/}| sgn (o). (454,b)
Their signs, once again, are chosen, consistently with
our convention of da/dx > 0, to account for any sign
of 77, o, and of the similarity parameter f.

5.2. Natural boundary layers (NBLs)

The similarity formulation is given by equation
(34), with homogeneous interface boundary con-
ditions and the constants 4,, A normalized to zero
or +1. The one-fourth boundary layer power law
holds. The orientation of the x-coordinate is always
in the sense of the motion, and changes in signs of the
thermodynamic coefficients f,, . are accounted for
in the temperature and concentration scale factor
fy. €y
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5.2.1. Single-diffusive NBL.

Thermal NBL. The scale factors /, and ¢, are given
by: I, =G| "*; t,= £1 with the positive sign
applying for f;9.>0: 4, =1 and 4, = 0. Momen-
tum and energy equations are coupled, and velocity
and temperature profiles depend on the two parameter
family of solutions of the problem

[0 =DfF—A-20f+F=0,

fO) = f0)=f(0)=0 (46a)
F'+ Q1= fF —(1-40)f F] =0,
FO)=1; F(0)=0 (46b)

with F=gand Q = Pr.

The concentration profiles are determined sub-
sequently and need not be necessarily similar. If the
surface distributions of solute concentration is of the
power type x"c,h(n) the equation to be solved is

R +Sc[(1-Dfh—yf h =0,

h(0) =1; h(0)=0. 47
It depends on the Schmidt number and on the arbi-
trary similarity parameter y. The solute distribution is
simply normalized with ¢y = +1.

Solutal NBL. This case is the dual of the preceding
one. The scale factors are given by /, = |G|~ "*;
¢, = +1 and the positive sign applying for f.g. > 0;
A;=0 and Ac= 1. The momentum equation is
coupled with the concentration equation and the
problem is still mathematically described by equations
(46) where now Q = Sc and F = h. The temperature
profiles can be determined subsequently and the same
remarks, already made, apply.

5.2.2. Double-diffusive NBL. The two Grashof num-
bers G and G are of the same order of magnitude,
the similarity parameters are given by

lo=1GA™ " o= %1;

LG I AT
= 16~ T 1B AC

co (48)
where the positive sign applies for fr¢,>0 and
Ar=1; A-=sgn(ff-). The thermal buoyant
characteristic speed on the interface is always positive.
The intensity of the solutal buoyant characteristic vel-
ocity is measured in terms of the thermal one and
normalized to one. The constant A, measures the
ratio of the two volume driving actions and is equal
to plus or minus one according to whether they act in
the same or in opposite directions. All three equa-
tions are coupled and the mathematical formulation
of the problem reads

STH(1=DfF"—(1=22)f+g+h=0 (49a)

g +Pri(l-2)fg—(1-41)fg] =0
B+ Sc[(1—=2) fh —(1—44) f'h = 0

subject to the normalized boundary conditions

(49b)
(49¢)
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f@ = f(0) = f"(0)=0 (50a)
9(0) = h(0) =1 (50b)
g(®) = h(0) =0 (30¢c)

where the plus or minus sign applies on the right-hand
side of the first equation according to whether fand
B have the same sign (concurrent or opposite driving
actions).

5.3. Combined boundary layers (CBLs)

In the remaining nine cases both types of driving
actions are present and thus they share some of the
features described when dealing with MBL and NBL.
We shall discuss them according to the number of
driving actions (volume and surface) present.

5.3.1. Four or three driving actions. In these cases,
as Table 2 shows, there is only one type of similar
solution characterized by the following values of the
similarity parameter: A = —1; f =y = 5. Since either
none or only one driving number vanishes the bound-
ary layers always exhibit the double-diffusive charac-
ter which is induced by either volume or surface
driving actions, The boundary layer thickness can be
indifferently described as following the 1/3 or 1/4
power law since in these cases it is always

G|

g = OO

(51

The mathematical formulation of the similarity prob-
lem reads

P23+ Arg+ Ach =0,

fO) = f(0)=0; f'0=-1 (51a)

g +Pri2fg—=5/'g1=0, g(0)=1;4(0) =0
(51b)

B +Sc[2fl =5 k=0, h(0)=1;h(c0)=0
(51¢)

where the constants 4;, A-can be = 0 depending on
the type of driving action which induces the double-
diffusive character and can never vanish simultane-
ously. The case A, = A = 0 falls within the class of
MBLsfor =y =>5.

5.3.2. All four driving actions present. The double-
diffusive character is induced by both surface and vol-
ume actions, the system (51) is completely coupled ;
the orientation of x is determined by the sign of G,
and it is as in Fig. 1 for g.f7 > 0. The constants A,
and A, are both different from zero and it is

G 1
(M- 10°

Gl 1
Ac = sgn (BCGC)ILMTI% 10

A7 =sgn (Br04)

(52)

hence they are positive when the corresponding vol-
ume and surface driving actions have the same sign
{concurrent).
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5.3.3. Three driving actions present. One must dis-
tinguish if the vanishing number is a volume or a
surface driving number.

Vanishing of a volume driving number. Since both
M and M. are different from zero, all remarks made
when discussing double-diffusive MBLs apply as
being specialized to the case § =y = 5. In particular
the 1/3 power law applies with |M,|/3 = 1. The only
quantitics to be determined are the constants 4, and
A.. The two cases Gy =0, G, =0 are dual. When
Go=0itis

1 |Gyl
16 1m,

Ac=0, Ay = (53)
where the positive sign applies if 8¢9, and o, have
the same signs (aiding volume and surface driving
actions). Momentum and energy equations are
coupled. The concentration field can be subsequently
determined : it must satisfy equation (51c) with f ()
solution of the problem (51a), (51b). Analogous
remarks apply for the dual case G = 0.

Vanishing of a surface driving number. Vanishing
of a surface driving number allows one constant to be
normalized to 1

M =0=A4,=1 (54a)

Myp=0=A,=1. (54b)

The system remains completely coupled : its solution
depends on three parameters : the numbers Pr, Sc and
the other constant. The 1/3 power law holds with
the normal scale factor /, determined by the non-
vanishing Marangoni number, and the same con-
siderations made when discussing single-diffusive
MBLs apply. The constant different from one is given

Ae =+ -+ (55a,b)

where the positive sign applies when 8,9, (respectively
Beg.) is of the same sign as o (respectively a;) (sur-
face driving action aiding with the volume driving
action of the other nature).

5.3.4. One volume and one surface non-vanishing
driving actions. These four cases complete the list of
15 possible cases. Combined boundary layers of these
classes share the features of the Marangoni and
natural boundary layers, as neither the momentum
equation nor the f”(0) boundary condition are
homogeneous.

Single-diffusive. Volume and surface actions are of
the same nature (either thermal or solutal). The two
cases are dual and, for conciseness, we shall consider
the case M- # 0 and indicate in parenthesis conditions
referring to the dual case. The temperature (con-
centration) exponent is fixed to 5 while that of con-
centration (temperature) remains arbitrary. The orien-
tation of x is determined by the sign of ¢,(0o¢), and is
directed as in Fig. | when ¢, > 0 (o > 0) ; the normal

L. G. NAPOLITANO et al.

scale factor is equal to |[M;| =3 (|M.|~'"?), the other
parameter #,(c,) is equal to +1/5, where the positive
sign applies for 6, > 0 (6, > 0). There is only a non-
vanishing constant

I Gy
IM |4X

|Gl

1
<"<': 5 mw) (6

and the positive sign applies when f;¢.(Bcg,) and
a+{(0) have the same sign (concurrent volume and
driving actions). Velocity and temperature (con-
centration) profiles are coupled and result from the
solution of the system

Y

Ar = +

3724+ A, F =0,

SO)=f'(e0) =0, f(0)=—1 (57a)
F'+QRfF ~5f'F] =0, FO0)=1: Floo)=0
(57b)

where F, Ag, F, Q are equal to g, A5, Pr(h, A, Sc).
The solution of the concentration (temperature) field
subsequently does not need to be similar and, if it is,
satisfies the following problem parametered in Sc (Pr)
and the arbitrary constant y(ff)

H+Se2fW =3 W =0, hO)=1: h(=x)=0
(9" +Pri2fg =B/ 9l =0. gO)=1: glox)=0).
(58)

The scale parameter cy(¢,) is arbitrary.

Double diffusive. Volume and surface non-van-
ishing driving numbers are of a different nature (one
thermal and one solutal) and of the two constants 4.,
A, one vanishes and the other is equal to one. Once
again the two cases are dual and to discuss them we
shall proceed as before. Both parameters ff and 7 are
free but they are connected by a relation; for M, # 0
(M. #0)1tis4f—3y = 5(4y—3p = 5), they are equal
only for ff =7y =15 the orientation of the x-coor-
dinate is determined by the sign of ¢,(g.) and is
directed as in Fig. 1 for 64> 0 (o, > 0). The normal
scale factor is [, = {M,| ([, = |[M¢]” ') ; the tem-
perature (concentration) scale parameter f,(c,) is

given by
=t (e )
=+ Cq = —
! AN I“/I

with the positive sign applying for > 0 (6, > 0);
the other scale parameter is given by
(|4: | /|>
|Gl

(lo ==*- |

and the positive sign applies when fG-M(yGr M) is
positive ; 4.(A;) vanishes and 4 ,(4.) is equal to one.
Velocity and temperature (concentration) profiles are

coupled and result from the solution of the system
ST A= =0 =24) [+ F =0,
SOy = f(0) =0; f(0)= —1

IM7I“

co =T TG T 1Bl

(59a)
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F'+Q[(l— ) fF —(2—=30)f F] =0,
F0)=1; Flo)=0

where for M, # 0 (M, # 0), F, Q, are equal to g, Pr,
(h, Sc). The solutions constitute a two-parameter (4
and Q) family. As before, the solution of the con-
centration (temperature) field can subsequently be
done and the previous remarks apply. For similar
interface distributions the problem to be solved for
Mc#0(M-#0)is

(59b)

' +Se [(1 — ) f — 54’43—[3.['11] =0,

h(0) = 1;

5+3
(g”+ Pr [(1 -Afg'— TZ. ’g] =0,

g(0)=1; g(w0)= 0)

h(oo) =0

(60)

for arbitrary non-vanishing f(y).

6. NUMERICAL RESULTS

The field equations have been solved via a quasi-
linearization method [14] and numerical results
obtained for each type of boundary layer (Marangoni,
natural, combined) when driving actions, either of the
same nature (single-diffusive BL) or of a different
nature (double-diffusive BL), are present. Since local
(interface velocity, heat and mass transfer bulk
coefficients) and global (displacement thickness)
properties on the interface are expressed in terms of
the f, g, and A derivatives evaluated at 5 = 0, and
of the asymptotic value f(o0), the numerical values
obtained for these quantities have been tabulated for
various Prandtl and Schmidt numbers and different
values of the similarity parameter.

The dimensional interfacial velocity U(X, 0) is pro-
portional to the f derivative /*(0)

U(X,0) = V.x""=2 £(0). 61

Heat and mass transfer bulk coefficients are expressed
in terms of local non-dimensional parameters, namely
the Nusselt and Sherwood numbers, defined respec-
tively as

VTt
Nu, = — Ay X< A X g'(0) (62a)
-VO),_
sh,=— @ V0, G omiigg) (62

AC 1

so that they are proportional to the g and % derivatives
g’(0), /(0). The displacement thickness, defined as

s [T ()
) 7'(0)

is proportional to the ratio f(o0)/f’(0).
In the case of the Marangoni boundary layers (see

dn = lyx (63)
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Section 5.1) the nature of the boundary layer (thermal,
solutal, double-diffusive) does not influence the result-
ing mathematical problem, which consists of the two-
point non-linear problem (41a) for the function f ()
and problem (43) for the temperature and the con-
centration in the similarity plane. Numerical solutions
of this problem have been already found in ref. [2],
whose results, for different values of the similarity
parameter (f=0.5,1,2) and various Prandtl
numbers, can be also applied to the double-diffusive
case (F(n) =g() or F(y) = h(n) according to
whether Q = Pr or Sc) by considering that the simi-
larity variable (1,) and the corresponding function
fo(no), introduced in the above quoted reference, are
linked to #, /() (present work) by the transformation

n=>1-2)""n, (63a)
fm) = (A=1)""f5(n,). (63b)

Table 4 reports numerical values of f’(0) and f(0)
for f ranging from 1 to 10. In the case f§ = 2 (constant
boundary layer thickness) there is an exact solution
of problem (41a): f(n) = 1—¢".

Tables 5(a) and (b) summarize the results obtained
in the case of natural (Table 5(a)) and combined
(Table 5(b)) single-diffusive boundary layers (equa-
tions for f(n) and F(n) coupled, with F() equal to
g(n) or to h(n)).

Table 5(a) shows the numerical values of £7(0), g'(0)
and f(c0) for various Prandtl numbers and different
values of the parameter §, in the case of the thermal
NBL. The dual case of solutal NBL can be formally
obtained by substituting the Prandtl number (Pr) with
the Schmidt number (Sc), g(x) with k(n) and B with
y. The effect of increasing Prandtl number, at given g,
results in the reduction of the velocity level and in the
thinning of the thermal boundary layer, whereas heat
transfer at the interface increases. In the case of com-
bined Marangoni and natural convection the effect
of aiding surface tension and buoyancy driven flows
results in increasing interface velocity and heat trans-
fer, compared to the flow driven by Marangoni or by
natural convection only.

The results shown in Table 5(b) coincide with those
obtained in ref. [5], if one considers that the similarity
variable (17,) and the function f;(n,) considered in the
above reference are linked to #, f(n) (present work)
by the transformation

n=2"",
J) =272 fo(no).

In the case of double-diffusive natural boundary lay-
ers (see Section 5.2) all three equations (momentum,
energy and concentration) are coupled and the solu-
tions constitute a three-parameter (4, Pr, Sc) family.
The numerical results corresponding to the two cases
of aiding and opposing thermal and solutal driv-
ing actions are reported in Tables 6(a) and 7(a),
respectively.

When the actions (thermal and solutal) are aiding,

(64a)
(64b)
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Table 4. Numerical values of f’(0) and f(c0) for different
values of the similarity parameter g, for MBLs

B 710 S{o)

1 1.296 1.481

2 1.000 1.000

3 0.864 0.783

4 0.782 0.656

5 0.723 0.570

6 0.679 0.508

7 0.644 0.460

8 0.615 0.423

9 0.591 0.392

10 0.570 0.366
[T+ =Df"—(1=20f7 = 0, 2 = (2—p)/3, with
boundary conditions: f(0) = 0, f"(c0) = 0, /"(0) = —1.

h(n, 4, Pr=a, Sc=>) is equal to g(n, 4, Pr=b,
Sc = a), so that the quantitative investigation has
been performed for the Prandtl number ranging from
0.1 to 10 with Sc > Pr (these values cover a wide class
of liquid mixtures of interest). Numerical values of
17(0), —g’(0), —h'(0), f(o0) calculated in the case of
alding thermal and solutal actions are considerably
higher than those corresponding to the case of oppos-
ing actions. Increasing the Schmidt number, at given
Pr and f, confines the buoyancy effect, due to solute
concentration differences, to a thinner solutal boun-
dary layer: therefore, velocity and heat transfer decrease
for aiding thermal and solutal driving actions (Table
6(a)) and increase for opposing actions (Table 7(a)),

L. G. NAPOLITANO et al.

whereas mass transfer increases vs Schmidt in both
cases. The effect of Prandtl number is the same found
for single-diffusive BL : increasing Prandtl, heat trans-
fer increases, but interface velocity and mass transfer
are reduced. Typical profiles of the functions f(n),
g(n) and A(n) in the similarity plane are reported in
Figs. 3-5 for double-diffusive NBLs with different
values of the parameter §, with Pr = 0.7 and Sc¢ = 7.

The case § = —3/5 corresponds to the rising plume
flow considered by Gebhart and Pera [4], whose
results can be found from our calculations. for
this particular value of §, applying the following
transformations

=4- ""‘(I G") 65
n= + ch Ho (65a)
- 3/4 GT .
SO =47 (1 + G()fo(ﬂo) (65b)
g = go(no) (65¢)
Gr
h(n) = a’j ho(#0) (65d)

where the subscripts (0) refer to Gebhart and Pera
variables. In this case (4 = 2/5) the solution for g(»)
and A(n) is

— 35 PrE(y

(66a)
(66b)

gln) =e¢
h(?]) —=e~ 3/58c¢ Fin)

Fn) = j fdn: g'(0) =K (0) =0. (66c)

Table 5. Numerical values of f'(0), g'(0) and f(o0) for different Prandtl numbers, at different 8, for thermal natural (a)
and combined (b) boundary layers

(a)
g=1
Pr (0} —g'(0) f(o0) S(0)
0.1 0.833 0.312 2.666 0.488
0.5 0.703 0.674 1.523 0.413
1 0.633 0.926 1.179 0.373
5 0.471 1.859 0.788 0.278
10 0.408 2472 0.698 0.241
15 0.374 2912 0.654 0.221

J7(oe) = 0. /7(0) = 0.¢(0) = I, g(x) = 0.

(b)
Pr /(0)
0.1 0.944
0.5 0.884
1 0.853
5 0.794
10 0.776
is 0.768

p=5

A S(0) SO —g'(0) Hx)
0.486 1.450 0.361 0.586 0.993
1.04 0.788 0.306 1.254 0.524
1.425 0.606 0.276 1.712 0.402
2.832 0.405 0.206 3.396 0.268
3.756 0.359 0.179 4.502 0.238
4.419 0.337 0.164 5.294 0.224

(A — (=20 [ = 0, g+ PrI(1=A) /g’ —Bf"g) = 0. i = (1 — B/, with boundary conditions: £(0) = 0,

—g'(0)

0.563 1.545
1.356 0.881
1.971 0.724
4.587 0.611
6.541 0.597
8.038 0.592

SR =3[ +g =0, g'+Pr2fg'=5f'g) =0, with

boundary conditions: f(0) =0. f'(c0) =0, f"(0) = —1,

9(0) =1, g(e0) = 0.
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Table 6. Numerical values of f7(0), g’(0), #'(0) and f(c0)
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for different Prandtl and Schmidt numbers at different §, for

double-diffusive natural (a) and combined (b) boundary layers with aiding thermal and solutal driving actions

(@)
p=1 B=5 g =10
Pr Sc f0) —g(© —H@O) f(c0) S0 —g(0) =) f(0) S0 —g'(0) k() f(x0)
0.1 01 1.183 0371 0371 3.694  0.690 0579 0579 1938 0513 069 0.69 1.307
02 1148 0356 0542 3310 0670 055 0837 1728 0496 0.675 1000 1.169
0.5 109 0341 0876 3.149  0.641 0538 1337 1650 0477 0.647 1597 1.127
1 1056 0333 1243 31002 0617 0525 1.886 164l 0459 0632 2251 111
21017 0327 1760 3076  0.595 0516 2646 1612 0440 0.622 3161 1.09%
50971 0322 2793 3055 0567 0.506 4.120 1601 0420 0610 4926 1.087
8 0951 0320 3432 3047 0555 0.503 5168 1596 0411 0.606 6179 1.084
10 0942 0319 3823 3044 0550 0501 5756 1.594
15 0.541 0499  7.000 1.592
1 2 0847 1061 1560 1.298 0499 1.637 2382 0.658 0370 1967 2857 0442
50792 1019 2441 1245 0467 1574 3075 0.630 0346 1.892 4438 0424
8 0768 1.003 3061 1230 0453 1.548 4638 0623 0336 1.861 5554 0419
10 0758 0996 3407 1224 0446 1.537 5159 0.621
12 0749 0990 3720 1220 0442 1.529 5629 0618 0327 1838 6739 0416
15 0740 0984 4139 1216 0436 1519 6262 0615 0323 1826 7496 0414
10 12 0566 2910 3.199 0823 0334 4422 4858 0411
IS 0553 2875 3548 0810 0327 4369 5383 0404 0248 530 582  0.280
20 0.538 2833 4054 0796 0318 4306 6.146 0397 0242 5237 6449 0275
30 0519 2780 4895 0779 0306 4.225 7415  0.388

[P+ A= = (120 f+g+h =0, g"+Pr{(1=2)fg' =pf'g) =0, K +Sc[(1=i)fh—yf B =0, 2=(1-p)/4,
y = f, with boundary conditions: f(0) = 0, f"(o0) = 0, f"(0) =0, g(0) = 1, g(c0) = 0, h(0) = 1, A(w) = 0.

(b)

Pro Sc f(0) —g9'©0) KO f(o)

0.1 0.1 1.090 0.638 0.638 1.981

0.2 1.076 0.619 0.946 1.787

0.5 1.050 0.599 1.567 1.712

1 1.030 0.588 2.273 1.691

2 1.014 0.581 3.271 1.680

5 0.994 0.574 5.250 1.672

8 0.986 0.572 6.673 1.669

10 0.982 0.571 7.475 1.668

15 0.976 0.570 9.180 1.667

1 2 0.932 2.081 3.078 0.757

5 0.909 2.040 4.960 0.737

8 0.899 2.028 6.326 0.732

10 0.895 2.020 7.090 0.730

12 0.892 2.018 7.780 0.728

5 0.888 2.013 8.714 0.727

10 12 0.821 6.743 7.419 0.610

15 0.817 6.720 8.310 0.607

20 0.812 6.701 9.617 0.604
SO =3P +g+h=0, ¢ +Pr2fg—5f'g] =0,

W+Sc2fh —51H =0,

with  boundary

conditions :

SO =0, f(o0) =0, f"(0)=—1, g(0)=1, g(0)=0,

h(0) = 1, h(c0) = 0.

For B > —3/5,¢(0) < 0, 4'(0) < 0,i.e.fort,> 0and
¢y > 0, energy and mass of solute diffuse from the
liquid to the gas; for § = —3/5, g’(0) = 0, #'(0) = 0,
i.e. the interface is adiabatic and with zero mass trans-
fer; for f < —3/5,9°(0) > 0, #’(0) > 0, i.e. energy and
mass of solute diffuse toward the liquid. The same
features are shown in Figs. 6 and 7, where numerical
values of f7(0) and — g’(0) are plotted vs the Schmidt
number for Pr = 0.7 and different values of B. For
B= —3/5 ¢'(0) is identically equal to zero, for
B < —3/5 (respectively B> —3/5) it is positive

(respectively negative) and increases (respectively
decreases) for increasing Schmidt numbers.

Results for the more complex case of double-diffus-
ive combined boundary layers are shown in Tables
6(b) and 7(b) corresponding to aiding and opposing
thermal and solutal driving actions, respectively. Since
in this case all possible driving actions are present
(volume and surface ; thermal and solutal), the results
obtained confirm many features already described
when dealing with the cases discussed before. In par-
ticular, the effect of increasing Schmidt number is
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Table 7. Numerical values of f'{0), 4'(0). #'(0) and f(cc) for different Prandt! and Schmidt numbers at different . for
double-diffusive natural (a) and combined (b) boundary layers with opposing thermal and solutal driving actions
()

B : I~ - =3 - }3:10

Pro Sc f(0) —g(0) —K(0) f(x) O g0) KO [(x) O —g(0) —KO) f(x)

0.1 0.2 0275 0213 0305 2362 0.160  0.325 0461 1.270 0118  0.388 0550 0.876
0.5 0434 0259 03599 2782 0.251 039 0897 1458 0185 0474 1070 0.993
2 0.594 0.288 1382 2930 0.346 0445 2072 1.533 0256 0535 2474 1042
5 0.669 0297 2305 2.967 0.390 0.462 3459 1.553 0.288 0.555 4.132  1.055
8 0.699 0.301 2975 2979 0.407 0467 4467 1.559 0,301  0.562 5337 1.059

1 2 0.278  0.653 0935 0.983 0.164 0992 1414 0490 0.121 1.189 1.692 0.332
3 0.408 0779  1.791 1.090 0.240 1189 2707 0.548 0.178 1426 3.239  0.370
8 453 0815 2387 1115 0.267 1.247  3.606 0.560 0.198  1.495 4.315 0.378
i2 0.484 0.839 3022 1.130 0.285 1.283 4.566 0.568 0,211 1.540 5464 0.384
15 0.499  0.849 3,431 1.136 0.294 1300 5.183 0.572 0.218 1.560 6.202  0.386

10 12 0.109  1.304 1431 0.393 0.064 1978 2.169 0.180 0.048 2369 2598 0.134
15 0106 1577 1937 0475 0.095 2391 2936 0224 0.070 2.865 3516 0.162
20 0205 1.779 2529 0.532 0.121 2,698 3831 0.255 0.090 3233 4.588 0.181
30

0249 1959 3420 0.579 0.147 2972 5177 0280 0.109 3560 6200 0.197

[+ == =20f+g~h=0, ¢"+Pr{(1-Dfg~ffgl=0. B"+Sc[(1=Dfh—yfh =0 Ai=(1-fy4
= f§, with boundary conditions: J{0) =0, f(x) =0, f"(0) = 0, {0y = 1, g{o0) = 0, A0y = L, A{x) = 0.

()

Pr Se )] —g' (1) —h'(0) Fi)

0.1 02 0.770 0.476 0.730 1.459
0.5 0.813 0.517 1.333 1.591

2 0.864 0.544 2.993 1.637
5 0.889 0.552 4.945 1.647
] 0.889 0.555 6.358 1.651
I 2 0.760 1.831 2722 0.664
5 0.791 1.888 4.600 0.692
8 0.803 1.907 5.950 0.699
12 0.811 1.920 7.397 0.702
5 0.815 1.925 8.328 0.704
1o 12 0.728 6.312 6.947 0.564
is 0.733 6.337 7.838 0.567
20 0.738 6.365 9.142 0.571
30

0.745 6.398 11.329 0.583

SO =3 g =0, g+ Pri2fg’—50g] =0,

B 4+Sc2fh~5fh =0 with boundary conditions:
0y =0, f(0)=0 [f"(0)=—1 g0)=1 glx)=0,
ROy = L, h(x) = 0.

F1G. 3. Profiles of f7{#) in the similarity plane for natural boundary layers (NBLs) at different values of
the similarity parameter ff, when aiding thermal and solutal driving actions are present. The Prandtl and
Schmidt numbers are equal to Pr = 0.7, Sc = 7.
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1.2 14 g 16

FiG. 4. Profiles of g(y) in the similarity plane for natural boundary layers (NBLs) at different values of the
similarity parameter f, when aiding thermal and solutal driving actions are present. The Prandtl and
Schmidt numbers are equal to Pr = 0.7, Sc = 7.

\ B T T 1 ]
0 1 2 3 a 5

Fi1G. 5. Profiles of A(y) in the similarity plane for natural boundary layers (NBLs) at different values of the
similarity parameter §, when aiding thermal and solutal driving actions are present. The Prandtl and
Schmidt numbers are equal to Pr = 0.7, Sc = 7.

B=-1 % X

- X
X:

KX

2,5

f'(0)y 2

x-x\x =—3/5 Plume flow (Gebhart and Pera 1971)

X

1.5
1 p=1
p=5 = DO
0,5 >
1] + + + — p——t ot ——t
0 1 2 3 4 5 8 7 8 9 10

Sc

F1G. 6. Profiles of f7(0) vs Schmidt number for natural boundary layers (NBLs) at different values of the
similarity parameter f, when aiding thermal and solutal driving actions are present. The Prandt] number
is equal to Pr = 0.7.
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B=5
—0
B=1
0,5
B=-3/5 Plume flow (Gebhart and Pera 1971)
0 X X + t t } X + »
—g'(0) -0.8 1 2 3 4 5 g6 7 8 9 10
-1
1,5 B=—1
X * b -
24 XX
2,5 /

F1G. 7. Profiles of —g’(0) vs Schmidt number for natural boundary layers (NBLs) at different values of
the similarity parameter 8, when aiding thermal and solutal driving actions are present. The Prandtl
number is equal to Pr = 0.7.

seen to be the reduction or the increasing of interface
velocity and heat transfer, for aiding or opposing ther-
mal and solutal driving actions, respectively, whereas
the solutal boundary layer thickness decreases and
solute mass transfer increases. At given Sc and f,
velocity levels and solute mass diffusion are reduced
by increasing the Prandtl number, whereas heat trans-
fer increases. Combined convection corresponds to
higher velocities, heat and mass transfer, when com-
pared to the case of pure Marangoni or natural con-
vection, due to the effect of aiding surface tension and
buoyancy driven flows. Finally, velocity, heat and
mass transfer, in the case of aiding thermal and solutal
actions, are considerably higher than those cor-
responding to the case of opposing actions.

The values of f7(0), corresponding to CBL and
to the analogous case of NBL with f =7y =35 are
compared in Figs. 8 and 9, where f7(0) is plotted vs

Schmidt and various Prandtl numbers, in the case of
aiding (Fig. 8) and opposing (Fig. 9) actions, respec-
tively. For any value of Se, f7(0) (i.e. the interfacial
velocity) for CBL is higher than for NBL, and, for
cach type of BL, attains higher values in the case of
aiding thermal and solutal effects.

This behaviour is summarized in Fig. 10. con-
cerning CBL and NBL for Pr = 0.1, in both situations
of opposing and aiding thermal and solutal driving
actions; f7(0) increases for opposing and decreases
for aiding thermal and solutal driving actions, since
the species diffusion buoyancy effects, as Sc increases,
is confined more and more near the interface region
(and thus the corresponding solutal driving action is
reduced).

Analogous considerations apply to the values of
the g derivative ¢’(0) (related to the local Nusselt
parameter). Figures 11 and 12 show that ¢'(0)

CBL

o os Pr=0.1 .

0,4 I - R R b

Pr=1
o2 JUPRRREE e oo 4  NBL
0,2 :
0.1 Pr=10 5
...... S R AR EEEEEEE R R
0 x= * ’ y +- " " ——
2 4 6 8 10 12 14 s

Sc

FiG. 8. Profiles of f7(0) vs Schmidt number for natural (NBLs) and combined (CBLs) boundary layers at
various Prandtl numbers with aiding thermal and solutal driving actions. In the case of NBLs the exponents
of the temperature and concentration are equal to 5.
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FI1G. 9. Profiles of £/(0) vs Schmidt number for natural (NBLs) and combined (CBLs) boundary layers at
various Prandtl numbers with opposing thermal and solutal driving actions. In the case of NBLs the
exponents of the temperature and concentration are equal to 5.
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FiG. 10. Profiles of f/(0) vs Schmidt number for natural (NBLs) and combined (CBLs) boundary layers
with aiding (g+#) and opposing (g—#h) thermal and solutal driving actions. In the case of NBLs the
exponents of the temperature and concentration are equal to 5. The Prandtl number is equal to Pr = 0.1.

~g'(0)

F1G. 11. Profiles of —g'(0) vs Schmidt number for natural (NBLs) and combined (CBLs) boundary layers
at various Prandtl numbers with aiding thermal and solutal driving actions. In the case of NBLs the
exponents of the temperature and concentration are equal to 5.
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F1G. 12. Profiles of —g’(0) vs Schmidt number for natural (NBLs) and combined (CBLs) boundary layers
at various Prandtl numbers with opposing thermal and solutal driving actions. In the case of NBLs the
exponents of the temperature and concentration are equal to 5.

increases or decreases vs Schmidt number according
to whether the solutal and thermal driving actions are
aiding or opposing, and the heat transfer is higher for
CBL than for NBL.

The mass transfer, expressed by the A derivative
K (0) (related to the local Sherwood parameter),
increases vs Schmidt number in both cases of aiding
and opposing thermal and solutal actions (Figs. 13
and 14).

The influence of the Prandtl number on the flow
and transport properties at the interface is shown in
the diagrams of Figs. 8—-14. As the Prandtl number
increases, heat transfer increases (Figs. 11 and 12),
whereas the interfacial velocity (Figs. 8 and 9) and the
mass transfer (Figs. 13 and 14) decrease since thermal

~h'(0)

buoyancy effect, at high Prandtl numbers, is confined
more deeply near the interface. The effect of volume
driving numbers (thermal and solutal) is shown in
Table 8, where, for given Prandtl and Schmidt num-
bers (Pr = 1; Sc = 5) numerical results are reported
for Ay and A, (coefficients in equations (51)) ranging
from 0 to 1, in the case of double-diffusive CBL.
Velocity, heat and mass transfer are enhanced by
increasing the thermal (4 ) or the solutal (4.) volume
driving action. The case A, = 0 represents the situ-
ation in which only one volume driving action (the

thermal one) is present, whereas for Ay = A = | the
thermal and solutal driving forces have the same order
of magnitude.

The higher values of the solute mass transfer par-

Pr=0.1

7 Pr=1
| /X Pr=10
x
E __~-°Pr=0.1
o7 _—A Pr=1
=T xPr=10
- 4,/)(_—’
0 t : ¢ ' ) t -

FIG. 13. Profiles of —A’(0) vs Schmidt number for natural (NBLs) and combined (CBLs) boundary layers
at various Prandtl numbers with aiding thermal and solutal driving actions. In the case of NBLs the
exponents of the temperature and concentration are equal to 5.
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Fi6. 14. Profiles of —#&’(0) vs Schmidt number for natural (NBLs) and combined (CBLs) boundary layers
at various Prandtl numbers with opposing thermal and solutal driving actions. In the case of NBLs the
exponents of the temperature and concentration are equal to 5.

ameter [—A’(0)], with respect to the heat transfer par-
ameter [—g’(0)], are related to the higher value of Sc
with respect to Pr. However, as discussed before, the
roles of Pr and Sc¢, A, and A, can be interchanged
in interpreting the results, by interchanging cor-
respondingly the roles played by the temperature and
solute concentration fields. With respect to this, it is
important to remember that the present analysis has
been limited to Prandtl and Schmidt numbers of order
of magnitude less than or equal to one. Further quan-
titative investigations will be needed to cover the other
regions of the plane (Pr, Sc¢) (see Fig. 2), where Pr

Table 8. Numerical values of f7(0), g’(0), #'(0) and f(<0) for
different A-and A, for double-diffusive combined boundary

layers
Pr=1, Sc=35
Ar Ac S0 —g®0 —KO)  fle)
0.25 0 0.760 1.815 4.481 0.624
0.25 0.778 1.840 4.539 0.632
0.5 0.794 1.864 4.594 0.640
0.75 0.810 1.887 4.647 0.648
l 0.826 1.909 4.697 0.655
0.5 0 0.794 1.874 4.598 0.664
0.25 0.810 1.896 4.650 0.671
0.5 0.825 1.918 4.701 0.677
0.75 0.841 1.938 4.749 0.684
1 0.855 1.958 4.795 0.690
0.75 0 0.825 1.925 4.702 0.696
0.25 0.840 1.946 4.751 0.703
0.5 0.855 1.965 4.794 0.708
0.75 0.869 1.984 4.842 0.714
1 0.883 2.002 4.885 0.719
1 0 0.853 1.971 4.798 0.726
0.25 0.868 1.990 4.843 0.729
0.5 0.882 2.008 4.886 0.735
0.75 0.896 2.026 4.928 0.740
1 0.909 2.040 4.960 0.745

=0, "+ Sc[2fh"—5/"h] =0, with boundary conditions:
SOy =0, f(0)=0,f"(0) = ~1,9(0) = 1, g(c) = 0.

and/or Sc are of order of magnitude greater than one
and the relevant transport numbers are (Re Pr) or
(Re Sc) according to the pertinent expression of the
diffusion characteristic speed (thermal or solutal). The
analysis of these regimes will be the object of future
works.

7. CONCLUSIONS AND FINAL COMMENTS

A unified approach to free convection (natural,
Marangoni, combined) boundary layers along vertical
free surfaces has been presented when the (volume
and surface) driving actions are due to volume differ-
ences and surface gradients of temperature and solute
concentration.

For each class of free convection similar solutions
have been derived and characterized, on the basis
of a rigorous order of magnitude analysis. For each
pertinent expression of the diffusion characteristic
number (depending on the orders of magnitude of the
Prandtl and Schmidt numbers) the 15 possible BL
regimes have been partitioned in four classes, each
one grouping the <‘:> cases in which (i) characteristic
driving numbers are of the same order of magnitude.
The similarity conditions, the pertinent expressions
for the scale factors and the field equations have been
specified and discussed for each type of BL.

An important and original contribution of the work
is represented by the mathematical formulation in
the similarity plane, which has been devoted to the
normalization of the interface boundary conditions
and of the balance equations, in order to minimize the
number of numerical solutions needed to cover all
the physically relevant cases. In this way, all possible
alternatives for the numerical values of the driving
numbers influence only the scale factors and not the
field equations, so that the quantitative investigation
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can be performed by solving only one problem for
each type of BL.

In the particular case of MBLs, it has been found
that the mathematical formulation of the similarity
probiem for a single-diffusive (thermal or solutal) BL
is the same as for a double-diffusive BL. Any function
f(A,n) can be interpreted as the non-dimensional
stream function of either a thermal or a solutal BL
with equal driving actions, or of a double-diffusive BL
if the thermal and solutal driving actions are
opportunely weighted by means of the temperature
and concentration scale factors.

Natural boundary layers have been investigated by
considering only the problem (49), (50), rather than
solving the field equations for different values of the
Grashof numbers as performed, for instance, by
Gebhart and Pera [4] in the case of double-diffusive
boundary layers along rigid walls.

For each type of BL we have obtained velocity,
temperature and concentration profiles in the simi-
larity plane; flow and transport properties at the
liquid—gas interface (interfacial velocity, heat and
mass transfer bulk coefficients) have been given
for a wide range of Prandtl and Schmidt numbers and
different values of the similarity parameter.

Even if the present study is focused on plane bound-
ary layers along vertical liquid-gas interfaces, the for-
mulation developed here can be extended to a BL
along horizontal free surfaces, either for uncoupled
or for coupled flow fields of the two interfacing fluids
(i.e. for liquid—gas and liquid-liquid configurations).
In this work temperature and concentration on the
free surface have been assumed to be known power
functions of the (x) coordinate, and for the asymptotic
conditions at the infinite, the simplest case of uniform,
quiescent outer regions has been considered. Next
works will be devoted to the study of more complex
coupled situations {(flow problems in liquid bridges
and/or shallow cavities), where the distributions of
the thermofluid dynamic properties on the interface
are unknown, and the flow field variables are assigned
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only in the initial section x = 0 and at the infinite
(non-quiescent outer regions, either non-dissipative
or dissipative). Other problems of the theory of MBLs
to be investigated include unsteady flows, corner
boundary layers, as well as the stability of the already
studied MBLs.
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COUCHES LIMITES DOUBLEMENT DIFFUSIVES LE LONG DE SURFACES
VERTICALES LIBRES

Résumeé—On traite la convection naturelle doublement diffusive (ou thermosolutale), c’est-a-dire con-
vection due aux forces de flottement (convection naturelle) et gradients de tension de surface (convection
de Marangoni), avec différences de volume, de température et de concentration de soluté aux surfaces.
L’attention est portée sur les couches limites formées le long d’une interface verticale liquide—gaz, lorsque
les nombres de transport adimensionnels caractéristiques sont suffisamment grands, de fagon que le
flottement et la tension interfaciale conduisent des écoulements dans des cavités ouvertes différentiellement
chauffées et des ponts liquides. Des classes de solutions affines sont obtenues pour chagque classe de
convection sur la base d’une analyse rigoureuse d’ordre de grandeur. Des profils de vitesse, de température
et de concentration sont décrits dans le plan de similarité; les propriétés d’écoulement et de transport a
I'interface liquide-gaz sont obtenus pour un large domaine de nombres de Prandtl et de Schmidt et
différentes valeurs du paramétre de similarité.
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DOPPELT-DIFFUSIVE GRENZSCHICHTEN ENTLANG EINER SENKRECHTEN
FREIEN OBERFLACHE

Zusammenfassung—Die vorliegende Arbeit behandelt freie Konvektion bei gekoppeltem Wirme- und
Stoffiibergang. Treibende Krifte sind dabei Auftriebskrifte (natiirliche Konvektion) und Ober-
flichenspannungsgradienten  (Marangoni-Konvektion), die durch Temperatur- und Konzen-
trationsgradienten in den Phasengrenzflichen hervorgerufen werden. Die Untersuchung konzentriert
sich auf Grenzschichten, die sich entlang einer senkrechten Gas/Fliissigkeits-Phasengrenze ausbilden,
wenn die angemessen definierten charakteristischen dimensionslosen TransportgréBen groB genug werden.
Beispiele fir derartige Grenzschichten sind Stromungen in differentiell beheizten, offenen Vertiefungen
und an Fliissigkeitsbriicken, diec von Auftriebs- und Oberflichenkréften angetrieben werden. Klassen
von dhnlichen Losungen fiir jede Situation werden mittels rigoroser GréBenordnungsanalyse bestimmt.
Geschwindigkeits-, Temperatur- und Konzentrationsprofile in der Ahnlichkeitsebene werden dargestellt.
Fiir einen groBen Wertebereich der Prandtl- und der Schmidt-Zahl sowie fiir verschiedene Werte des
Ahnlichkeitsparameters werden die Stromungs- und Transportparameter bestimmt: Geschwindigkeit in
der Phasengrenze, Gesamtwirme- und -stoffiibergangskoeffizienten.

TEIJIOBbIE U JUPPY3UOHHBIE ITIOTPAHUYHBIE CJIOW BAOJIb BEPTUKAJIBHBIX
CBOBOJHBIX NOBEPXHOCTEN

Asmnoramms—Mccenenymres quddysus Temna ¥ Macchl NpH KOMOHHHPOBAHHOM CBOGONHON KOHBEKIIMH,
T.€. KOHBEKIIHH 32 CYET MOABEMHLIX CHII (€CTECTBCHHAs KOHBEKIMA) H 33 CYET rPafHCHTOB MOBEPXHOCT-
HOTO HaTsDKEHHs (KOHBEKUHS MapaHroHH), 00yCIOBIEHHBIX Pa3sHOCTBIO OOBEMOB M IOBEPXHOCTHBIMH
rPaJMeHTaMH TEMIEPATYP M KOHUEHTPAalUMH pacTBOPEHHOro BemecTBa. OCHOBHOE BHHMaHue oOpa-
maeTcs Ha GOpPMHUPOBaHHE MOTPAHHYHBIX CJIOEB BAOJb BEPTHKANBHON IPAHHIBI pA3fena KHAKOCTb—Ta3
OpH JOCTATOYHO OGoAbIIMX 6e3pa3sMEpHBIX YHCIAX, XAPaKTEPU3YIOIHX KOHBEKTHBHBIC TEYCHHs, B
HE3AMKHYTBIX HATPEBAEMBIX MOJIOCTAX M XUIKHX MOCTHKAX. [ KaXIOro BHAA KOHBEKIHH IOMYYEHBI
Knaccel nofiobHeIx pemennit. [IpeacTasneHbl IpodsTH CKOpOCTel, TeMnepaTyp U KOHUEHTPALMI B ILIOC-
KOCTH MOoRoOHs; MOJy4eHbl XapaKTEPHCTHKH TEYEHHs H MEpeHOCA Ha rpaHule pa3lena XUAKOCTb—Ta3
(CKOpOCTE Ha rpaHMLE pa3fesa # 06beMHbie KOMPOUIHEHTHI TEMNI0- H MACCONIEPEHOCA) B IIMPOKOM [IHa-
na3oHe u3MeHeHUi yucen Mpannras u HIMuara npu pa3nHyHbIX 3HAYEHHAX KPATEPUS OAO0HS.
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